Введение
История Великой теоремы Ферма неразрывно связана с историей математики, так как затрагивает все основные темы теории чисел. Она открывает уникальную возможность понять, что движет математикой и что дает вдохновение математикам, — а это, возможно, даже более важно. Великая теорема Ферма составляет центральное ядро захватывающей истории о смелости, мошенничестве, хитрости и трагедии, — истории, которая так или иначе затрагивает всех величайших героев математики.
Своими корнями Великая теорема Ферма уходит в математику Древней Греции — за две тысячи лет до того, как Пьер де Ферма сформулировал свою проблему в том виде, в каком мы знаем ее сегодня. Таким образом, Великая теорема Ферма связывает основания математики, заложенные Пифагором, с наиболее изощренными идеями современной математики. При написании этой книги я опирался на хронологическую последовательность событий, начиная с революционного эпоса пифагорейского братства и заканчивая личной историей Эндрю Уайлса — его упорной борьбы за то, чтобы найти решение головоломки Ферма.
Глава 1 повествует о Пифагоре и объясняет, почему теорему Пифагора можно считать прямым предком Великой теоремы Ферма. В этой же главе обсуждаются фундаментальные понятия математики, встречающиеся в этой книги. В главе 2 излагается история от Древней Греции до Франции XVIII века, когда Пьер де Ферма создал самую глубокую в истории математики задачу-головоломку. Несколько страниц посвящено описанию жизни Ферма и обсуждению его некоторых других блестящих открытий. Это поможет лучше понять необычный характер Ферма и его вклад в математику (далеко выходящий за рамки Великой теоремы, носящей ныне его имя).
Главы 3 и 4 описывают попытки доказать Великую теорему Ферма, предпринятые в XVIII, XIX и начале XX века. Хотя эти попытки окончились неудачей, они привели к созданию поразительного арсенала математических методов и средств. Некоторые из этих методов были использованы в ряде самых последних попыток доказать Великую теорему Ферма. Кроме того, в этих главах читатель найдет сведения о многих математиках, чье творчество в той или иной степени было связаны с наследием Ферма.
Остальные главы книги содержат хронику замечательных событий последних сорока лет, в течение которых в исследовании Великой теоремы Ферма произошел переворот. В частности, в главах 7 и 8 основное внимание уделено работе Эндрю Уайлса, чей героический прорыв, совершенный в последнее десятилетие, поразил математическое сообщество. В основу этих заключительных глав положены обширные интервью с Эндрю Уайлсом. Для меня они стали единственной в своем роде возможностью услышать от непосредственного участника событий о самом необычном приключении XX века. И я надеюсь, что мне удалось передать то творческое горение и героизм, которые потребовались Уайлсу, чтобы с честью выдержать суровые испытания, длившиеся целое десятилетие.
Рассказывая легенду о Пьере де Ферма и придуманной им поразительной задаче, я пытался объяснять математические понятия не прибегая к уравнениям, но x, y и z время от времени неизбежно поднимали свои головы. Всякий раз, когда уравнения все же появляются в тексте, они снабжены достаточными пояснениями и не вызовут трудностей у читателей, не обладающих математической подготовкой. Для тех же читателей, чьи познания в математике глубже, я привожу несколько приложений, в которых затрагиваемые в основном тексте математические идеи излагаются более подробно. Кроме того, в конце книги приведен список литературы для дальнейшего чтения. Как правило, в него вошли книги, из которых читатель-нематематик может на доступном для себя уровне получить представление о том или ином разделе математики.
Создание книги было бы невозможно без помощи и участия многих людей. Особенно я хочу поблагодарить Эндрю Уайлса, который, вопреки обыкновению, давал продолжительные и подробные интервью в самый разгар работы над решением проблемы Ферма. За семь лет работы на поприще научной журналистики я не встречал никого, кто был бы так глубоко предан своей работе, и я навсегда сохраню благодарность профессору Уайлсу за его готовность поведать мне свою историю.
Я хочу также поблагодарить других математиков, которые помогли мне написать эту книгу и любезно согласились дать мне подробные интервью. Одни из моих собеседников сами принимали участие в попытках найти доказательство Великой теоремы Ферма, другие были свидетелями исторических событий, происшедших за последние сорок лет. Часы, которые я провел, беседуя и обмениваясь с ними шутливыми замечаниями, доставили мне необычайную радость, и я высоко ценю то терпение и энтузиазм, с которыми они объясняли мне суть многих прекраснейших математических понятий.
Я хотел бы особенно поблагодарить Джона Коутса, Джона Конвея, Ника Каца, Барри Мазура, Кена Рибета, Питера Сарнака, Горо Шимуру и Ричарда Тейлора.
Свою книгу я стремился проиллюстрировать как можно большим числом портретов, чтобы читатель составил лучшее представление о тех, кто принял участие в истории Великой теоремы Ферма. Различные библиотеки и архивы сделали все возможное, что было в их силах, чтобы помочь мне. Я хочу выразить особую благодарность Сьюзен Оукес из Лондонского математического общества, Сандре Камминг из Королевского общества и Яну Стюарту из Варвикского университета. Я признателен также Жаклин Савани из Принстонского университета, Дункану Макагнусу, Джереми Грею Полу Балистеру из Института сэра Исаака Ньютона за их помощь в подборе исследовательского материала. Я благодарен Патрику Уолшу, Кристоферу Поттеру, Бернадетте Альвес, Санджиде О'Коннел и моим родителям за их комментарии и поддержку, оказанную мне в последний год.
Наконец, многие интервью, которые упоминаются в книге, были получены, когда я работал над документальной частью телевизионного фильма о Великой теореме Ферма. Я хочу поблагодарить Би-Би-Си, позволившую мне воспользоваться этим материалом и в особенности Джона Линча, который работал вместе со мной над этим фильмом и способствовал пробуждению моего интереса к Великой теореме Ферма.
Март 1997 г.
Памяти Пакхара Сингха
Другое по теме
13. Археологические методы датирования
«СРАЖЕНИЯ НЕ БЫЛО? Результаты раскопок,
проведенных в Италии швейцарским археологом Георгом Гловацки, оказались
сенсационными. Ученый установил, что в районе, где, по преданию, произошла
битва при Каннах, в которой войска Ганни ...