Поведение существующих в природе мягких тканейСтраница 2
Резиновые трубы широко используются в технике, и можно было бы предположить, что Природе для вен и артерий следовало бы создать материал типа резины. Однако Природа не пошла таким путем - и у нее были на это веские основания. Для материалов типа резины зависимость напряжения от деформации имеет очень характерную S-образную форму (рис. 51).
Рис. 51. Кривая деформирования, типичная для резины.
Мои собственные не очень строгие расчеты показывают, что если из материала с такой кривой деформирования сделать цилиндрическую трубку и накачивать в нее газ или жидкость, создавая внутреннее давление, то после того, как окружная деформация достигнет величины 50% или несколько больше, процесс деформирования станет неустойчивым и на трубке образуется сферическая выпуклость (в медицине такого рода выпуклость квалифицируется как "аневризм"), так что трубка станет похожа на змею, проглотившую футбольный мяч. Этот результат легко воспроизвести экспериментально, надувая резиновый детский "шарик" цилиндрической формы (рис. 52), так что выполненные мною расчеты, вероятно, правильны.
Рис. 52. Продолговатый воздушный "шарик", иллюстрирующий образование сферической выпуклости при увеличении внутреннего давления.
Вот почему упругое поведение стенок артерий не похоже на поведение резины.
Но поскольку в венах и артериях на самом деле возникают деформации порядка 50%, а с другой стороны, как вам скажет любой врач, появление аневризмов в кровеносных сосудах крайне нежелательно, упругие характеристики материалов типа резины совершенно неподходящи для большинства оболочек внутри нашего тела, они редко встречаются у животных тканей.
Если выполнить соответствующие расчеты, то оказывается что упругими характеристиками, обеспечивающими полную устойчивость при больших деформациях рассматриваемой системы с внутренним давлением, являются только характеристики типа тех, что представлены на рис. 53. Такая форма зависимости напряжения от деформации (с небольшими вариациями) и в самом деле является весьма обычной для тканей животных, в особенности для пленок. Почувствовать это можно, потянув себя за мочку уха.
Рис. 53. Кривая деформирования, типичная для мягких тканей животных.
В связи с рис. 53 возникает вопрос, проходит ли для рассматриваемых материалов кривая зависимости напряжения от деформации через начало координат (точку, где и напряжение, и деформация равны нулю) или при обращении деформации в нуль в материале все еще остается некоторое конечное напряжение. (Вопрос, несомненно, рассчитан на некоторое замешательство инженеров, воспитанных на гуковских материалах, подобных стали.) Однако, насколько можно судить по экспериментам, для живого организма эта точка нулевых напряжении и деформаций не соответствует какому-либо реальному начальному состоянию (так же обстояло бы дело в любой конструкции, состоящей, скажем, из мыльных пленок). Во всяком случае, артерии постоянно находятся в организме в натянутом состоянии, и, если их извлечь из живого или только что умершего животного, они очень значительно сократятся.
Как мы увидим ниже, это натяжение артерий может служить дополнительным средством для предотвращения тенденции к изменению их длины при изменении давления крови. Иначе говоря, оно служит целям выравнивания осевого и окружного напряжений в стенках артерии, то есть стремится вернуть систему к тому состоянию, которое характерно для поверхностного натяжения, и поэтому, возможно, существовало в живой природе в очень далеком прошлом. У людей, испытывающих сильную и продолжительную вибрацию, например у лесорубов, работающих цепными пилами, это натяжение может быть утрачено, тогда артерии у них удлиняются и становятся изогнутыми, скрученными или зигзагообразными.
Другое по теме
Оценка и интерпретатор ответа
Эта глава посвящена обзору различных видов
оценок, способам их вычисления. В ней так же рассмотрен способ определения
уровня уверенности сети в выданном ответе и приведен способ построения оценок,
позволяющих определять уровень ...