Леонард Эйлер и выпучивание тонких стержней и пластинСтраница 2
Рис. 143. Различные условия эйлеровой формы потери устойчивости. а - оба конца шарнирно оперты; б - оба конца заделаны; в - один конец заделан, а второй шарнирно оперт и может перемещаться в горизонтальном направлении.
Далее, жесткая заделка концов передает любые монтажные несоосности самому стержню. При этом стержень может оказаться изогнутым еще до нагружения и его предельная нагрузка упадет. Вот почему жесткая установка мачты, при которой она одновременно крепится и к палубному перекрытию, и к килю, сейчас уже вышла из употребления (рис. 144). почему нельзя дома держать орхидею
Рис. 144. Изогнутый до нагружения стержень (в данном случае мачта) теряет устойчивость при меньшей нагрузке.
Следует отметить, что в выписанную нами формулу Эйлера не входит предел прочности материала. Нагрузка, при которой стержень или панель данной длины теряет устойчивость, зависит только от момента инерции сечения I
и модуля Юнга (жесткости) материала. Длинный стержень не разрушается при выпучивании. Он только упруго изгибается таким образом, чтобы "выскользнуть" из-под нагрузки. Если при выпучивании не был достигнут "предел упругости" материала, то после снятия нагрузки стержень опять выпрямится, и, спружинив, как ни в чем не бывало примет свою прежнюю форму.
Это свойство часто может быть весьма полезным, поскольку, основываясь на нем, можно создавать "неразрушающиеся" конструкции. Ковры и ковровые дорожки не портятся именно по этой причине, и природа, конечно же, широко использует этот принцип, особенно в отношении низкорослых растений, например травы, которую всегда довольно трудно вытоптать. Так, мы спокойно гуляем по лужайке, не причиняя ей большого вреда. Именно гениальная комбинация острых колючек с открытием д-ра Эйлера делает живую изгородь одновременно неразрушаемой и труднопреодолимой для людей и скота. С другой стороны, для комаров и других насекомых, использующих в качестве оружия длинное и тонкое жало, природа вынуждена была "изобрести" прямо-таки невообразимое количество самых разных конструкционных уловок, чтобы предотвратить потерю устойчивости этих тонких, жалящих нас стержней.
При жизни Эйлера его формула не могла найти сколько-нибудь значительного использования в технике. Практически ее могли применить лишь при проектировании корабельных мачт и других стоек. Однако корабельные мастера тех времен уже справились с этой проблемой. В замечательных справочниках XVIII в. по кораблестроению, таких, как "Основы изготовления мачт, парусов и такелажа" Стила, содержатся подробные таблицы, где приведены размеры брусьев любого типа, основанные на опыте, и сомнительно, чтобы эти рекомендации могли быть существенно улучшены с помощью вычислений.
Серьезный интерес к явлению потери устойчивости возник лишь столетие спустя и был связан с возросшим использованием листовой стали. Стальные листы были, естественно, тоньше, чем каменная кладка и деревянные детали, к которым так привыкли инженеры. В 1848 г. при постройке железнодорожного моста через пролив Менай расчеты на устойчивость впервые делались для серьезных практических целей. Этот мост явился совместным детищем трех выдающихся людей: Роберта Стефенсона (1802-1859), Итона Ходжинсона (1789-1861), математика и одного из первых профессоров-инженеров, и Вильяма Фейрберна (1789-1874), пионера конструкционного использования листовой стали.
Подвесные мосты Стефенсона оказались неудачными из-за своей излишней гибкости. К тому же адмиралтейство настаивало, и не без оснований, на тридцатиметровой высоте пролета, чтобы под мостом могли проходить корабли. Удовлетворить требованиям как жесткости, так и высоты можно было лишь единственным путем - спроектировав мост балочного типа невиданной до этого длины. По ряду соображений наилучшим вариантом казалась балка в форме трубы, собранная из листовой стали, внутри которой двигался бы поезд. Длина каждой секции должна была составлять около 140 м.
Вскоре стало очевидным, что труднее всего справиться с проблемой устойчивости стальных панелей, образующих верхнюю, сжатую сторону балки. Для простых панелей и стержней формула Эйлера является точной, но здесь речь шла о мостовых балках достаточно сложной формы, для расчета которых в то время не было еще соответствующей теории. Выход был только один - эксперименты на моделях. Как и можно было ожидать, результаты оказались довольно путаными и ненадежными, причем до такой степени, что все три проектировщика перессорились между собой. Казалось, их партнерство распадется, так и не породив конструкции действительно надежного моста. В конце концов порешили делать для моста клетчатые коробчатые балки (рис. 145). Ко всеобщему облегчению, мост оказался удачным и служит по сей день.
Рис. 145. Балка в виде трубы коробчатого сечения (мост "Британия").
Другое по теме
Создатель Великой проблемы
Знаете, — признался дьявол, — даже самые лучшие
математики на других планетах, а они, должен вам сказать, намного опередили
ваших, не решили ее.
Взять хотя бы того парня на Сатурне, что очень похож на гриб
на ходулях ...