Сравнения веса сжатых и растянутых конструкций
Мы уже говорили в предыдущей главе, что для ряда материалов величины прочности на сжатие и растяжение часто сильно различаются, но для многих весьма распространенных материалов, таких, как сталь, это различие не очень велико, так что массы коротких растянутых и сжатых элементов должны быть более или менее одинаковыми. На самом деле сжатый короткий стержень может быть даже легче растянутого, так как для него иногда не нужны законцовки, совершенно необходимые в случае растяжения. Bub0000005 toyota пленка пупырчатая rublgid.ru.
Однако с увеличением длины такого стержня дает себя знать эйлерова потеря устойчивости. Напомним, что критическая нагрузка, при которой сжатый стержень длиной L
начинает выпучиваться, изменяется пропорционально 1/L2
. Это означает, что для стержня с заданным поперечным сечением предельное напряжение при сжатии с увеличением L
убывает очень быстро. Чтобы выдержать заданную нагрузку, длинный стержень должен быть гораздо толще и, следовательно, тяжелее короткого. Как мы установили в предыдущем параграфе, в случае растяжения все происходит как раз наоборот.
Очень поучительно сравнить, как конструкционный элемент длиной 10 м выдерживает нагрузку весом 1 т (104 Н) в условиях растяжения и сжатия.
Растяжение.
Для стального троса допустимое напряжение примем равным 350 МН/м2 (35 кгс/мм2). Принимая во внимание крепления на его концах, найдем общий вес конструкции равным примерно 3,5 кг.
Сжатие.
Попытаться удержать нагрузку в 1 т (104 Н) с помощью одного сплошного стального стержня длиной 10 м было бы просто глупо: чтобы избежать потери устойчивости, его пришлось бы сделать очень толстым и, следовательно, очень тяжелым. На практике можно, например, использовать стальную трубу диаметром около 16 см с толщиной стенок около 5 мм. Такая труба будет весить около 200 кг. Другими словами, ее вес будет в 50-60 раз больше, чем у стального стержня, работающего в тех же условиях на растяжение. Стоимость конструкции увеличится примерно в той же пропорции. Далее, если мы захотим распределить нагрузку между несколькими деталями, то ситуация не только не станет лучше, а значительно ухудшится. Если мы попробуем держать нагрузку в 1 т не с помощью одной колонны, а, скажем, с помощью похожей на стол конструкции на четырех стержнях 10-метровой высоты, то общий их вес удвоится и достигнет 400 кг. Чем на большее число элементов мы распределим данную нагрузку, тем больше будет вес всей конструкции: он растет как n1/2
, где n
- число элементов (см. приложение 4).
С другой стороны, если мы будем увеличивать нагрузку при фиксированной длине, то ситуация в случае сжатой конструкции будет выглядеть получше. Например, если увеличить нагрузку в сто раз, с 1 т до 100 т, то, если вес растянутой конструкции увеличится соответственно с 3,5 до 350 кг, вес одной колонны высотой в 10 м увеличится только десятикратно, с 200 до 2000 кг. Поэтому в случае сжатия гораздо экономичнее поддерживать большую нагрузку, чем малую (рис. 152). Все эти рассуждения справедливы также и для панелей, пластин и оболочек (см. приложение 4).
Рис. 152. Зависимость относительного веса (и стоимости) детали, которая должна передать заданную нагрузку, от ее длины.
Приведенный анализ подтверждает рациональность таких конструкций, как палатки и парусные суда. В них сжимающие нагрузки действуют концентрированно на небольшое количество по возможности коротких мачт или шестов. В то же время растягивающие нагрузки, как мы уже говорили, лучше распределить среди большого количества канатов и тросов. Поэтому шатер, имеющий единственный шест и множество растяжек, является самым легким "зданием", которое только можно построить при заданном объеме. Любая палатка будет легче и дешевле капитального здания из дерева или камня. Точно так же катер или шлюп с единственной мачтой имеет более легкую и эффективную оснастку, чем шхуна, кеч или любой более сложный корабль с большим количеством мачт. Именно поэтому были тяжелы и неэффективны А-образные или треугольные мачты древних египтян и конструкторов викторианских броненосцев (см. гл. 10).
Конструкция человеческого тела имеет много общего с конструкцией шатра и парусного корабля. Небольшое количество сжатых деталей, то есть костей, расположенных примерно в центре конструкции, окружено множеством мышц, сухожилий и связок, работающих на растяжение, причем эта система гораздо сложнее системы парусов и канатов полностью оснащенного корабля. Кстати, с конструкционной точки зрения две ноги лучше, чем четыре, а сороконожка может существовать только потому, что ноги у нее весьма коротки.
Другое по теме
Аннотация
Еще в первые десятилетия нашего века ответ на вопросы о
свойствах материалов искали в эксперименте. И лишь последние 40 лет ученые,
специалисты в области материаловедения, стали серьезно изучать строение
материалов, убедившис ...