Критерий Гриффитса и критическая длина трещиныСтраница 2
Итак, при обычных уровнях нагружений все трещины, за исключением самых мелких, имеют энергетический стимул к росту. Весь вопрос теперь в том, могут ли они расти. Иными словами, существует ли соответствующий механизм роста, то есть существует ли способ для реализации имеющейся энергетической выгоды, или преобразования одной формы энергии в другую? Гриффитсов баланс энергии, энергетическая выгода распространения трещины, длина которой превышает некоторую критическую величину, - явления совершенно общие для всех упругих тел. Но вот механизм преобразования энергии как раз и отличает вязкие материалы от хрупких.
Этим механизмом является концентрация напряжений. Как мы видели в главе 3, концентрация напряжений на кончике трещины выражается приближенно формулой
K = 2(l/R )1/2,
где l - длина трещины, идущей с поверхности, или полудлина внутренней эллиптической трещины, R - радиус ее кончика.
В типичном хрупком материале радиус кончика трещины R остается постоянным, он не зависит от длины трещины. Поэтому с ростом трещины концентрация напряжений становится опаснее. На практике R имеет величину, сравнимую с атомными размерами. Пусть R , скажем, 1 ангстрем. Тогда у кончика трещины длиной около микрона (10000 А) напряжение, равное теоретической прочности, появится уже при очень умеренных средних по объему напряжениях. А такого размера трещина обычно соответствует гриффитсовой критической длине. Следовательно, трещина может расти, начиная примерно с этой длины, причем, конечно, момент начала роста сильно зависит от приложенной нагрузки.
Но после того, как трещина двинулась вперед, ситуация обостряется. Концентрация напряжений увеличивается, баланс энергии все более и более склоняется в пользу развития трещины. Если внешняя нагрузка не снимается, рост трещины быстро ускоряется и вскоре достигает максимально возможной величины (обычно она составляет приблизительно 38% от скорости звука). Для стекла это около 6500 км/час (что и наблюдалось в эксперименте). Ну, а в это время волны напряжений гуляют, наверное, в материале во всех направлениях со скоростью звука (то есть быстрее, чем распространяются трещины), отражаясь как от старых, так и от вновь образовавшихся поверхностей, и дело закончится, вероятно, далеко не одной трещиной. Иными словами, материал разбивается вдребезги. Это оказывается возможным благодаря тому, что при больших напряжениях общая упругая энергия материала “заплатит” за образование множества новых поверхностей; в самом деле, при теоретической прочности она могла бы “рассчитаться” за разделение всего материала на слои толщиной в один атомный размер.
Совершенно хрупкие материалы вроде стекла достаточно надежны лишь при очень малых напряжениях. Стекло, например, можно использовать в витрине магазина, потому что в этом случае гриффитсова длина трещины достаточно велика и материал не боится небольших царапин или иных повреждений поверхности. Но если мы хотим работать с высокими уровнями напряжений, где-нибудь около теоретической прочности стекла, мы не имеем права допускать появления на поверхности даже самых мельчайших трещин. Ведь стоит только одной трещине увеличиться до критической длины (а она может быть порядка тысячи ангстрем - одной десятой микрона), как наступит катастрофическое разрушение. Именно поэтому применение однородных хрупких материалов при серьезных нагрузках чересчур опасно.
Нельзя сказать, что отсутствие у некоторых материалов способности сопротивляться распространению трещин казалось всегда недостатком первобытному человеку - он мог делать из кремня и обсидиана различные режущие инструменты. Практически эти минералы представляют собой природные стекла. Если обладать необходимыми навыками, то легкого нажатия рукой на деревянный нож достаточно, чтобы отщепить длинную полоску минерала, которая сама может затем использоваться в качестве ножа. Обработка же нехрупких камней, таких, как нефрит, может быть выполнена только с помощью гораздо более трудоемкого процесса-шлифовки. Чаще всего растягивающие напряжения возникают в инструментах вследствие изгиба, поэтому, придавая каменным инструментам компактные формы, можно не допустить больших напряжений и обеспечить достаточный срок их службы. Конечно, оружие типа каменного меча было бы совершенно непрактичным.
Другое по теме
Позор математики
Математика — не церемониальный марш по гладкой дороге, а
путешествие по незнакомой местности, где исследователи часто рискуют
заблудиться. Строгость должна стать указанием для историка о том, что данная
местность нанесена на ка ...