От теоремы Пифагора до Великой теоремы ФермаСтраница 1
О теореме Пифагора и бесконечном числе пифагоровых троек шла речь в книге Э.Т. Белла «Великая проблема» — той самой библиотечной книге, которая привлекла внимание Эндрю Уайлса. И хотя пифагорейцы достигли почти полного понимания пифагорейских троек, Уайлс скоро обнаружил, что у невинного на первый взгляд уравнения x 2 + y 2 = z 2 имеется и темная сторона — в книге Белла давалось описание математического чудовища.
В уравнение Пифагора входят три числа x, y и z , все три числа входят в квадрате (например, x 2 = x ·x ):
x 2 + y 2 = z 2
Но в той же книге Белла приводилось и уравнение, очень похожее на уравнение Пифагора, но отличающееся от него тем, что все числа входят в кубе (например, x 3 = x ·x ·x ). Так называемая степень переменной x в этом уравнении равна не 2, а 3:
x 3 + y 3 = z 3
Найти целочисленные решения уравнения Пифагора, т. е. пифагоровы тройки, было сравнительно легко, но стоит лишь степени измениться с 2 на 3 (т. е. заменить квадраты кубами), как решение уравнения, столь похожего на уравнения Пифагора, в целых числах, по-видимому, становится невозможным. Поколения математиков исписывали страницу за страницей в своих блокнотах в тщетной надежде найти решение уравнения в целых числах.
При решении исходного «квадратного» уравнения плитки, из которых состояли два квадрата, требовалось расположить так, чтобы они образовывали третий квадрат более крупных размеров. В случае решения «кубического» уравнения из кубиков, образующих два куба, требуется составить третий куб более крупных размеров. Ясно, что независимо от того, какие два куба выбраны в качестве исходного, из образующих их кубиков можно сложить либо третий куб, причем несколько кубиков останутся «лишними», либо неполный (недостроенный) куб. Ближайшим к идеальному кубу будет такая кладка, в которой один кубик останется лишним или окажется недостающим. Например, если мы начнем с кубов 63 и 83 то, рассыпав их на кубики, сможем сложим из них кладку, в которой всего лишь одного кубика не хватит до полного куба 93 (рис. 5).
+
=
63 + 83 = 93 - 1
216 + 512 = 729 - 1
Рис. 5
Найти три целых числа, которые в точности удовлетворяют кубическому уравнению, по-видимому, невозможно. Иначе говоря, по-видимому, у уравнения
x 3 + y 3 = z 3
не существует целочисленных решений. Более того, если степень повысить с 3 (куба) до любого большего целого числа (т. е. до 4, 5, 6…), то найти целочисленное решение такого уравнения, по-видимому, также невозможно. Иначе говоря, у более общего уравнения
xn + yn = zn ,
где n больше 2, решения в целых числах не существует. Всего лишь изменив 2 в уравнении Пифагора на любое целое число бóльшее 2, мы вместо сравнительно легко решаемого уравнения получаем задачу умопомрачительной сложности. Великий математик XVII века француз Пьер де Ферма сделал удивительное заключение: он утверждал, что знает, почему никому не удавалось найти решение общего уравнения в целых числах. По его словам, причина заключалась в том, что такого решения не существует.
Ферма был одним из наиболее блестящих и загадочных математиков в истории. Как и всякий другой, он не мог проверить бесконечно много чисел, но был абсолютно уверен в том, что не существует тройки целых чисел, которая удовлетворяла бы общему уравнению, так как его уверенность опиралась на доказательство. Подобно Пифагору, которому вовсе не требовалось проверить все мыслимые треугольники, чтобы убедиться в правильности своей теоремы, у Ферма не было необходимости перепробовать все мыслимые тройки целых чисел, чтобы убедиться в справедливости его теоремы.
Другое по теме
Аннотация
Слово криптография означает тайнопись.
Российская криптография имеет многовековую историю,
начинающуюся с указов Петра I о «черных кабинетах». До середины 80-х годов XX
века криптография в России использовалась только для воен ...