Рождение проблемыСтраница 2
Одно из открытий Ферма касается так называемых дружественных чисел, тесно связанных с совершенными числами, так восхитившими Пифагора двумя тысячами лет раньше. Дружественными числами называются два числа, каждое из которых равно сумме делителей другого числа. Пифагорейцы совершили необычайное открытие, установив, что 220 и 284 — дружественные числа. Делителями числа 220 служат числа 1, 2, 4,5, 10, 11, 20, 22, 44, 55, 110, а их сумма равна 284. С другой стороны, делителями числа 284 служат числа 1, 2, 4, 71, 142; их сумма равна 220.
Пару чисел 220 и 284 стали считать символом дружбы. Мартин Гарднер в книге «Математические новеллы» рассказывает о том, что в Средние века имели хождение талисманы с выгравированными на них числами 220 и 284, якобы способствующими укреплению любви. Некий арабский нумеролог сообщает об обычае вырезать числа 220 и 284 на плодах, один из которых влюбленный съедал сам, а другой давал съесть предмету своей страсти, как своего рода математическое средство усиления любовного влечения. Первые теологи отмечали, что в Книге Бытия Иаков отдает в подарок брату своему Исаву 220 животных — «двести коз, двадцать козлов». По мнению теологов, число животных, равное одному из чисел, образующих дружественную пару, свидетельствует о любви Иакова к Исаву.
Помимо 220 и 284 других дружественных чисел не было известно вплоть до 1636 года, когда Ферма обнаружил пару 17 296 и 18 416. И хотя это открытие нельзя назвать важным, оно свидетельствует о том, что Ферма хорошо знал натуральные числа и любил «играть» с ними. Ферма стал своего рода законодателем моды на нахождение дружественных чисел. Декарт открыл третью пару (9 363 584 и 9 437 056), а Леонард Эйлер продолжил список дружественных чисел до 62-й пары. Интересно отметить, что Декарт и Эйлер «проглядели» гораздо меньшую пару дружественных чисел. В 1866 году шестнадцатилетний итальянец, тезка великого скрипача, Никколо Паганини открыл пару 1184 и 1210.
В XX веке математики обобщили понятие дружественных чисел и занялись поиском так называемых «общительных» чисел — замкнутых циклов из трех и более чисел. Например, в тройке чисел
(1 945 330 728 960; 2 324 196 638 720; 2 615 631 953 920)
делители первого числа в сумме дают второе число, делители второго в сумме дают третье число, а делители третьего числа в сумме дают первое число. Самый длинный из известных циклов состоит из 28 общительных чисел, первое из которых равно 14 316.
Хотя открытие новой пары дружественных чисел сделало Ферма своего рода знаменитостью, его репутация выросла еще больше благодаря серии решенных им трудных задач.
Например, Ферма заметил, что число 26 «стиснуто» между числами 25 и 27, одно из которых представляет собой квадрат (25 = 52 = 5·5), а другое — куб (27 = 33 == 3·3·3). Ферма занялся поиском других чисел, зажатых между квадратом и кубом, но найти ничего так и не удалось. Родилось подозрение, что число 26 единственное. После многодневных напряженных поисков Ферма удалось выстроить сложное доказательство, не оставлявшее сомнений в том, что 26 — действительно единственное число, заключенное между квадратом и кубом. Предложенная им цепочка логических доводов убедительно свидетельствовала, что ни одно другое число не обладает этим свойством.
Другое по теме
1. Общие соображения
1) В XV—XVI веках хронология рассматривалась как раздел
математики, а затем перешла в ведение лишь историков и стала рассматриваться
как некая вспомогательная дисциплина. Мы хотим возродить старую традицию,
призвать истори ...