Подход с позиций грубой силыСтраница 1
Когда в 1940 году Г.Г. Харди заявил о том, что самая первоклассная математика в основном бесполезна, он тут же был вынужден добавить, что это не обязательно плохо: «Настоящая математика не оказывает влияния на ведение войн. Никто еще не открыл ни одного применения теории чисел в военных целях». Вскоре выяснилось, что Харди заблуждался.
В 1944 году Джон фон Нейман в соавторстве с Оскаром Моргенштерном написал книгу «Теория игр и экономическое поведение», в которой ввел придуманный им термин «теория игр». Фон Нейман попытался использовать математику для описания структуры игр и того, как люди играют в них. Он начал с шахмат и покера, а затем попытался построить модели более сложных игр — таких, как экономика. После второй мировой войны корпорация RAND оценила потенциал идей фон Неймана и пригласила его принять участие в разработке стратегии холодной войны. С той поры математическая теория игр стала основным средством, с помощью которого генералы проверяют разрабатываемые ими стратегии, рассматривая вооруженные конфликты как усложненный вариант шахматных партий. Простой иллюстрацией применения теории игр к анализу военных операций служит задача о труэли.
Труэль аналогична дуэли, но с тремя участниками вместо двух. Однажды утром м-р Блэк, м-р Грей и м-р Уайт вздумали решить конфликт труэлью на пистолетах. Стрелять условились до тех пор, пока в живых не останется только один из участников. М-р Блэк стрелял хуже всех. В цель он попадал в среднем лишь один раз из трех. М-р Уайт стрелял лучше всех — без промаха. Чтобы уравнять шансы участников труэли, м-ру Блэку разрешено стрелять первым, за ним должен стрелять м-р Грей (если он останется в живых), затем мог стрелять м-р Уайт (если он еще будет жив).
Далее все начиналось снова, и так до тех пор, пока в живых не останется только один из участников труэли. Вопрос: в кого должен выстрелить м-р Блэк, производя свой первый выстрел? Вы можете попытаться ответить на этот вопрос, опираясь на свою интуицию, но лучше все же, если ваш ответ будет основан на теории игр. Решение задачи см. в Приложении 9.
Большое значение в военное время приобрела математическая теория криптографии — наука о конструировании и «взламывании» кодов. Во время второй мировой войны союзники поняли, что математическая логика может оказаться полезной для дешифровки немецких радиограмм, если только вычисления проводить достаточно быстро. Требовалось автоматизировать математические вычисления, чтобы их могла производить машина, и более других способствовал раскрытию немецких кодов английский математик Алан Тьюринг.
В 1938 году Тьюринг вернулся в Кембридж после стажировки в Принстонском университете. Он стал свидетелем того переполоха, который вызвали теоремы Гёделя о неразрешимости, и принял участие в попытках спасти осколки мечты Гильберта.
В частности, Тьюринг захотел выяснить, существует ли способ, позволяющий определить, какие проблемы разрешимы и какие неразрешимы, и попытался разработать метод, дающий ответ на этот вопрос. В те времена вычислительные устройства были весьма примитивными и, по существу, бесполезными, когда дело касалось серьезных задач. Поэтому Тьюринг основывал свои идеи не на реальных компьютерах, а на представлении о некоторой воображаемой машине, способной неограниченно производить вычисления.
Все, что требовалось Тьюрингу для исследования абстрактных логических проблем, — гипотетическая машина, снабженная бесконечной воображаемой лентой, разделенной на клетки, и способная неограниченно производить вычисления. Тьюринг и не подозревал, что предложенная им воображаемая автоматизация решения гипотетических проблем в конечном счете приведет к перевороту в выполнении реальных вычислений на реальных машинах.
Другое по теме
КОЛЕЯ
1979 год. Брежневская эпоха надоела всем до чертиков. Масса
анекдотов, частушек, сплетен на эту тему, а товаров в магазинах все меньше и
меньше. Все последние годы заметно невооруженным взглядом: система катится
вниз. Про побед ...