Аспирантские годыСтраница 3
Так как в арифметике вычетов конечное число элементов, то в ней сравнительно легко найти все возможные решения любого уравнения. Например, не составляет труда перечислить все возможные решения кубического уравнения
x
3 — x 2 = y 2 + y
в арифметике вычетов по модулю 5. Вот они:
x = 0, y = 0,
x = 0, y = 4,
x = 1, y = 0,
x = 1, y = 4.
Хотя некоторые из этих решений не являются решениями в целых числах, в рассматриваемой арифметике вычетов все они — решения. Например, подставим значения (x =1, y =4) в наше уравнение:
x3 — x2 = y2 + y,
13 — 12 = 42 + 4,
1 — 1 = 16 + 4,
0 = 20.
Но число 20 эквивалентно 0, так как число 5 делит число 20 с остатком 0.
Поскольку найти число решений кубического уравнения в целых числах крайне трудно, математики решили сначала определить число решений в различных арифметиках вычетов. Для приведенного выше уравнения число решений в арифметике по модулю 5 равно четырем. Это записывают так: E 5 = 4. Можно подсчитать число решений и в других арифметиках. Например, в арифметике вычетов по модулю 7 число решений равно 9, т. е. E 7 = 9.
Подводя итог своим вычислениям, математики составили список числа решений в каждой из арифметик вычетов и назвали его L -рядом эллиптической кривой (или соответствующего кубического уравнения). Что, собственно, означает здесь буква L , все давно забыли. Считается, что L означает Густава Лежена Дирихле, который также занимался изучением кубических уравнений. Для ясности я буду использовать обозначение «E -ряд» — ряд, полученный для кубического уравнения. Для приведенного выше уравнения E -ряд выглядит так.
Уравнение: x3 — x2 = y2 + y
;
E-ряд: E1 = 1, E2 = 4, E3 = 4, E4 = 8, E5 = 4, E6 = 16, E7 = 9, E8 = 16, …
Пока не известно, сколько решений имеют кубические уравнения в обычном числовом пространстве, которое бесконечно, E -ряды заведомо лучше, чем ничего. В действительности, E -ряд содержит в себе значительную долю информации о том уравнении, которое оно описывает. Подобно тому, как биологическая ДНК несет в себе всю информацию, необходимую для построения живого организма, E -ряд несет в себе наиболее существенную информацию об эллиптической кривой. Математики питали надежду, что E -ряд — это своего рода математическая ДНК, и что при помощи его они в конечном счете смогут вычислить все, что им хотелось бы знать об эллиптической кривой.
Работая под руководством Джона Коутса, Уайлс быстро заслужил репутацию блестящего специалиста по теории чисел, глубоко разбирающегося в арифметике эллиптических кривых. С каждым новым результатом и с каждой опубликованной статьей Уайлс, сам того не ведая, набирался опыта, который несколькими годами позже привел его к возможности доказать Великую теорему Ферма.
В то время еще никому не было известно, что в послевоенной Японии уже произошла цепь событий, которые позволят установить неразрывную связь между эллиптическими кривыми и модулярными формами. Именно эта связь и приведет впоследствии к доказательству Великой теоремой Ферма. Поощряя Уайлса к изучению эллиптических кривых, Коутс дал ему средства, позволившие осуществить давнюю мечту.
Другое по теме
Контрастер
Компонент контрастер предназначен для
контрастирования нейронных сетей. Первые работы, посвященные контрастированию
(скелетонизации) нейронных сетей появились в начале девяностых годов [64, 323,
340]. Однако, задача контрастиро ...