На чердаке отшельникаСтраница 1
В начале XX века великого математика Давида Гильберта спросили, почему он никогда не пытался доказать Великую теорему Ферма. На это Гильберт ответил: «Прежде чем начать, я должен был бы затратить года три на усиленную подготовку, а у меня нет столько времени, чтобы так расточительно расходовать его на решение проблемы, которое может закончиться неудачей». Уайлс сознавал, что для того, чтобы иметь хоть малейшую надежду найти доказательство, ему сначала необходимо с головой погрузиться в проблему, но, в отличие от Гильберта, был готов пойти на риск. Уайлс прочитывал все новейшие номера математических журналов и осваивал самые последние математические методы. Собирая оружие, необходимое для предстоящей битвы, Уайлс провел следующие восемнадцать месяцев, знакомясь даже с самыми незначительными результатами или методами, имевшими отношение к эллиптическим кривым и модулярным формам. Надо сказать, что, по его прикидкам, любая сколько-нибудь серьезная попытка доказательства вполне могла потребовать от математика-одиночки десятилетних усилий.
Уайлс отказался от всего, что не было напрямую связано с доказательством Великой теоремы Ферма. Он перестал принимать участие в нескончаемой веренице конференций и симпозиумов. Оставаясь сотрудником математического факультета Принстонского университета, Уайлс продолжал проводить учебные семинары, читать лекции для студентов и руководить курсовыми и дипломными работами.
«Я имел обыкновение уединяться в кабинете, где пытался найти фрагменты решений тех или иных математических проблем, которые должны были стать частями единой мозаики… Эти фрагменты я пытался сопоставить с каким-нибудь прежним широким, на уровне понятий, пониманием различных разделов математики, которые могли бы прояснить ту проблему, над которой я размышлял. Иногда приходилось идти и заглядывать в какую-нибудь книгу, чтобы узнать, как эта задача решена там. Иногда это требовало слегка изменить известный результат, проделать какие-то дополнительные вычисления. Иногда я приходил к заключению, что все сделанное раньше совершенно бесполезно. В этом случае мне приходилось изобретать что-нибудь совершенно новое. Неизвестно, откуда что бралось.
По существу, это одна из загадок мышления. Часто для того, чтобы привести в порядок мысли, бывает необходимо попытаться изложить их в письменном виде. Когда вы по-настоящему заходите в тупик, когда речь идет о настоящей проблеме, которую требуется решить, обычное традиционное математическое мышление не может помочь вам ничем. К новой идее ведет только длительный период необычайного сосредоточения на проблеме без каких-либо отвлечений. Необходимо действительно не думать ни о чем, кроме проблемы, полностью сосредоточиться на ней. Затем вы должны остановиться, после чего, насколько я могу судить, наступает период релаксации, во время которого вступает в игру подсознание, и в этот момент к вам приходит новая идея».
С того самого момента, когда Уайлс принял важное для себя решение заняться систематическим поиском доказательства гипотезы Таниямы-Шимуры, он вознамерился работать в полной изоляции и секретности. В современной математике сложилась культура кооперации и сотрудничества, поэтому принятое Уайлсом решение могло бы показаться возвращением в прошлое. Он как бы подражал образу действий самого Ферма, самому знаменитому из математических отшельников. Свое решение работать в обстановке полной секретности Уайлс отчасти объясняет желанием работать без помех, не отвлекаясь от основной задачи: «Я понимал, что все, что имеет какое-то отношение к Великой теореме Ферма, вызывает слишком большой интерес. Нельзя как следует сосредоточиться на решении важной задачи, если полностью не отвлечься от всего постороннего. Слишком много зрителей заведомо мешают достижению цели».
Еще одним мотивом избранного Уайлсом курса на уединение и секретность была его жажда славы. Уайлс опасался, что когда он проделает основную часть доказательства, но ему не будет доставать заключительного элемента выкладок, весть о прорыве просочится наружу — и ничто не помешает какому-нибудь сопернику из числа коллег-математиков воспользоваться проделанной Уайлсом работой, завершить доказательство и похитить награду.
Другое по теме
Великое Объединение в математике
Был малый не промах, а стал, как чума.
Виною всему — теорема Ферма:
Не может никак он ее доказать,
Уайлса пример не дает ему спать.
Фернандо Гувеа
На этот раз никаких сомнений в доказательстве не было. Две
статьи общим объем ...