«Доказана ли Великая теорема Ферма?»Страница 1
Был сделан лишь первый шаг на пути к доказательству гипотезы Таниямы-Шимуры, но избранная Уайлсом стратегия была блестящим математическим прорывом, результатом, который заслуживал публикации. Но в силу обета молчания, наложенного Уайлсом самим на себя, он не мог поведать о полученном результате остальному миру и не имел ни малейшего представления о том, кто еще мог совершить столь же значительный прорыв.
Уайлс вспоминает о своем философском отношении к любому потенциальному сопернику: «Никто не захочет затратить годы на доказательство чего-то и обнаружить, что кому-то другому удалось найти доказательство несколькими неделями раньше. Но, как ни странно, поскольку я пытался решить проблему, которая по существу считалась неразрешимой, я не очень опасался соперников. Я просто не надеялся, что мне или кому-нибудь другому придет в голову идея, которая приведет к доказательству».
8 марта 1988 года Уайлс испытал шок, увидев на первых полосах газет набранные крупным шрифтом заголовки, гласившие: «Великая теорема Ферма доказана». Газеты «Washington Post» и «New York Times» сообщали, что тридцативосьмилетний Иоичи Мияока из токийского Метрополитен университета решил самую трудную математическую проблему в мире. Пока Мияока еще не опубликовал свое доказательство, но в общих чертах изложил его ход на семинаре в Институте Макса Планка по математике в Бонне. Дон Цагир, присутствовавший на докладе Мияоки, выразил оптимизм математического сообщества в следующих словах: «Представленное Мияокой доказательство необычайно интересно, и некоторые математики полагают, что оно с высокой вероятностью окажется правильным. Полной уверенности еще нет, но пока доказательство выглядит весьма обнадеживающим».
Выступая с докладом на семинаре в Бонне, Мияока рассказал о своем подходе к решению проблемы, которую он рассматривал с совершенно иной, алгебро-геометрической, точки зрения. За последние десятилетия геометры достигли глубокого и тонкого понимания математических объектов, в частности, свойств поверхностей. В 70-е годы российский математик С. Аракелов попытался установить параллели между проблемами алгебраической геометрии и проблемами теории чисел. Это было одно из направлений программы Ленглендса, и математики надеялись, что нерешенные проблемы теории чисел удастся решить, изучая соответствующие проблемы геометрии, которые также еще оставались нерешенными. Такая программа была известна под названием философии параллелизма. Те алгебраические геометры, которые пытались решать проблемы теории чисел, получили название «арифметических алгебраических геометров». В 1983 году они возвестили о своей первой значительной победе, когда Герд Фалтингс из Принстонского Института высших исследований внес существенный вклад в понимание теоремы Ферма. Напомним, что, по утверждению Ферма, уравнение
xn + yn = zn
при n бóльших 2 не имеет решений в целых числах. Фалтингс решил, что ему удалось продвинуться в доказательстве Великой теоремы Ферма с помощью изучения геометрических поверхностей, связанных с различными значениями n . Поверхности, связанные с уравнениями Ферма при различных значениях n , отличаются друг от друга, но обладают одним общим свойством — у них всех имеются сквозные отверстия, или, попросту говоря, дыры. Эти поверхности четырехмерны, как и графики модулярных форм. Двумерные сечения двух поверхностей представлены на рис. 23. Поверхности, связанные с уравнением Ферма, выглядят аналогично. Чем больше значение n в уравнении, тем больше дыр в соответствующей поверхности.
Другое по теме
Сети естественной классификации
В данном разделе курса будут рассмотрены сети естественной
классификации. Этот класс сетей имеет еще одно название — сети, обучающиеся без
учителя. Второе название имеет более широкое распространение, однако, является
в корне н ...