88. Бородатая история
Студент идет отвечать на экзамене по асимптотическим методам в прикладной математике.
— Скажите, милейший, — любопытствует профессор, — на какую оценку вы рассчитываете?
— Только на «отлично»! — ни секунды не колеблясь, говорит студент.
— Откуда такая уверенность? — оживляется профессор, пытаясь тренированным взглядом просканировать студента на предмет наличия хитроумно запрятанных шпаргалок.
— Да я, видите ли, все знаю, — чеканит студент, — а чего не знаю, выведу.
— Интересно, интересно! — потирает руки профессор. — Тогда выведите-ка мне формулу . э-э . бороды.
— Ну что ж, — сходу начинает отвечать студент, — асимптоматика здесь довольно проста. Представим бороду в виде предела суммы непрерывных функций, характеризующих рост волос. Исходя из чисто физических соображений, можно априори утверждать, что функция бороды будет непрерывна и ограничена, хотя, при желании нетрудно провести и подробный анализ ее свойств. Итак, выделим две подпоследовательности функций роста волос и представим исследуемую функцию в виде суммы их пределов. Отсюда получаем:
борода = бор + ода .
Рассмотрим первое слагаемое. В свое время Нильс Бор (не в его ли честь оно названо?) показал, что в принципе эта функция совпадает во всех точках с функцией леса. Что же касаемо до второго слагаемого, оды, то его можно представить в виде обобщенной функции стиха. Таким образом, имеем:
борода = бор + ода = лес + стих .
В свою очередь, сумма двух последних функций описывает, по сути, физическую модель безветрия, разложение для которой можно найти в приложении №2 к учебнику по функциональному анализу Колмогорова и Фомина. Применяя теперь простейшие алгебраические преобразования и помня о физическом смысле аргументов нашей исходной функции, окончательно получаем:
борода = лес + стих = безветрие = безве + 3е = – ве + 3е = 3е – ве = е*(3 – в),
где е — основание натурального логарифма, а в — коэффициент волосатости .
Другое по теме
Введение в курс. Основные понятия.
Целью
математического моделирования экономических систем является использование
методов математики для наиболее эффективного решения задач, возникающих в в
сфере экономики, с использование, как правило, современной вычисл ...