2. Гипербола как сечение поверхности конуса фронтальной плоскостью
Пусть требуется построить сечение поверхности конуса, стоящего на горизонтальной плоскости, плоскостью Р , которая параллельна плоскости V .
На рисунке 103 показана фронтальная плоскость Р , параллельная оси конуса и пересекающая его поверхность по гиперболе. Данная кривая проецируется на плоскость V без искажения. https://profsale-opt.ru пена монтажная оптом купить в питере.
Выполняя построение проекций сечения, вначале нужно найти секции характерных точек. В данном случае эти характерные точки представляют собой самые нижние и самые верхние ее точки.
Нижние точки сечения.
На рисунке 103а показаны две самые нижние точки сечения, они лежат в горизонтальной плоскости проекций и отмечены цифрой 1. Эти точки лежат на пересечении окружности основания с горизонтальным следом секущей плоскости P h. На эпюре рисунке 103б изображены их горизонтальные проекции 1, а их фронтальные проекции 1́ лежат на оси х .
Верхняя точка сечения (вершина гиперболы). На этом же рисунке дана профильная проекция 3˝ вершины гиперболы, которая непосредственно видна на профильной проекции конуса как пересечение его контура со следом Pw .
Следует отметить, что если профильная проекция конуса отсутствует, то, чтобы найти проекции вершины гиперболы (линии сечения), нужны некоторые вспомогательные построения. При этом любая горизонтальная плоскость Q пересекает конус по окружности, которая проецируется на горизонтальную плоскость Н без искажения. Эта окружность проектируется на фронтальную плоскость проекций в виде отрезка, который равен ее диаметру и который заключен между контурными образующими конуса. Если провести горизонтальную плоскость Q достаточно близко к основанию конуса, то часть данной окружности будет отсечена плоскостью Р (окружностью 2–2). Если провести такую плоскость несколько ближе к вершине, тогда окружность целиком сохранится (окружность 4). Требуется найти такое положение горизонтальной плоскости, которое даст самую большую целую окружность (окружность 3). Эта плоскость будет касаться гиперболы в вершине, она же определит положение искомой точки 3́.
Горизонтальная проекция этой окружности касается следа P h, а ее радиус равен оа. Поэтому для нахождения проекций вершины гиперболы нужно:
а) повернуть радиус оа на 90° до положения оb ;
б) затем найти фронтальную проекцию b́ точки В на контурной образующей конуса;
в) после этого из точки b́ провести прямую, параллельную оси х, до встречи с осью симметрии фронтальной проекции конуса в точке 3́ .
Промежуточные точки гиперболы.
Чтобы найти проекции промежуточных точек гиперболы, проводят вспомогательные горизонтальные плоскости Q между вершиной гиперболы и основанием конуса. При этом каждая такая плоскость Q определит по паре точек гиперболы. Это построение выполняется следующим образом:
1) сначала проводят фронтальный след Qv секущей горизонтальной плоскости, которая пересекает контур проекции тела в некоторой точке с́ ;
2) затем находят горизонтальную проекцию с ;
3) после чего радиусом оси проводят окружность. При этом точки, в которых след P h пересекает эту окружность, представляют собой горизонтальные проекции 2 тех точек гиперболы, которые лежат в плоскости Q , поскольку они отделяют сохранившуюся часть окружности от отсеченной плоскостью Р ;
4) в завершение находят фронтальные проекции 2́ точек гиперболы на следе Q v.
Данное построение указано на рисунке стрелками. После того как проведено несколько вспомогательных плоскостей и построено достаточное количество точек гиперболы, следует соединить их при помощи лекала.
Другое по теме
Метод назначений
...