СООТВЕТСТВИЯ, ОТОБРАЖЕНИЯ, ОТНОШЕНИЯСтраница 2
2. АНИТИРЕФЛЕКСИВНОСТЬ . Это когда отношение к самому об'екту (всегда) неприменимо. Например, «перпендикулярность» на множестве прямых. Прямая не может быть перпендикулярна самой себе.
3. СИММЕТРИЧНОСТЬ . Если Иванов «учится в одной группе» с Петровым, то и обратное справедливо. Если прямая А «перпендикулярна» прямой B, то и обратное справедливо.
4. АНТИСИММЕТРИЧНОСТЬ . Если тысячу рублей можно «разменять» сотнями, то обратное не под силу даже фокуснику. Мрачноватый, но очень точный пример: «носить траур по кому-то»…
5. ПОЛНОТА . Это самое сложное свойство, поскольку, в отличие от всех остальных, оно прежде всего «направлено» на само множество. Полнотой обладает отношение, которое для любой пары разных элементов данного множества выполнимо хотя бы «в одну сторону». Например, полнотой обладает отношение «больше» для множества действительных чисел, ибо для двух разных действительных чисел одно обязательно больше другого. Но если мы к действительным числам добавим комплексные, то свойство полноты исчезнет. Если хотя бы одно из сравниваемых чисел будет комплексным, сравнение на «больше»-"меньше" теряет смысл.
6. ТРАНЗИТИВНОСТЬ . Если Иванов «учится в одной группе» с Петровым, а Петров с Сидоровым, то Иванов «учится в одной группе» с Сидоровым. Отношение включения тоже транзитивно. Если группа «включена» в множество студентов университета, а это множество «включено» в множество студентов страны. То множество студентов группы «включено» в множество студентов страны. Можно продолжить эту цепочку включений, прихватив галактику. И вот тут опять подводный камень казуистики!
Если студенческую группу рассматривать как элемент университета – множества, состоящего из групп, а университет элемент высшей школы – множества, состоящего из университетов, то группа не является элементом высшей школы (там элементы университеты). То есть отношение «принадлежности» нетранзитивно. «Вассал моего вассала -…»
Вернемся к функциональному соответствию (то есть к функции). Если это соответствие к тому же еще и всюду-определено, то оно называется ОТОБРАЖЕНИЕМ .
Если отобразить множество студентов в группе, на множество фамилий в группе, То это скорее всего будет ОТОБРАЖЕНИЕ множества студентов НА множество фамилий. То есть сюр'ективное соответствие. Если же отобразить множество студентов группы на множество фамилий студентов университета, то говорят, что имеет место ОТОБРАЖЕНИЕ множества студентов В множество фамилий. То есть в области значений будут и «незадействованные фамилии».
Мы подошли к одному из самых фундаментальных, может потому и неблагозвучных, понятий и теории множеств, и математики вообще, мы подошли к ГОМОМОРФИЗМУ .
Пример. Отобразим множество точек участка земной поверхности на множество точек карты. Сейчас оставим в стороне то, что некое множество точек земной поверхности отобразится в одну точку на карте, в таких случаях неин'ективность – обычное дело. Для нас существенно то что, чем выше точки земной поверхности над уровнем моря, тем в более коричневые точки карты они отображаются.
Таким образом, мы рассматриваем не просто множества элементов. В первом случае здесь между элементами множества существует отношение «выше», а во втором – «коричневее». Где выше в первом – там коричневее во втором. «Выше» и «коричневее» – это отношения заданные на своих множествах.
Отображение земной поверхности НА карту не просто ставит всем элементам одного множества элементы другого. Но, кроме того, если между двумя элементами первого множества существует отношение «выше», то между их образами во втором множестве имеет место отношение «коричневее». Естественно, если точки земной поверхности лежат на одной высоте, то они отобразятся в точки карты с одинаковой коричневостью.
Такое отображение называется ГОМОМОРФНЫМ . Или говорят, что между этими множествами существует ГОМОМОРФИЗМ .
Вернемся к тому, что слово не очень благозвучное, а по американским меркам и громоздкое. Поэтому последнее время все чаше используется более короткий (усеченный) термин – МОРФИЗМ.
Морфизмы играют в математике исключительную роль. Коль скоро математику не без оснований часто отождествляют с математическим моделированием, то приведем афоризм из одной умной философской книжки: ХОРОШАЯ МОДЕЛЬ ВСЕГДА ГОМОМОРФНА .
Афоризм в конце лекции провоцирует размышления. Чего бы и хотелось добиться…
Другое по теме
«Думаю, мне следует остановиться»
Архимеда будут помнить, когда Эсхила забудут, потому что
языки умирают, но не математические идеи. Возможно, бессмертие — глупое слово, но, по всей видимости, математик
имеет наилучший шанс на бессмертие, что бы оно ни означало ...