Азарт и расчетСтраница 2
Разумеется, практически игроки не вычисляют значение вероятности выигрыша и руководствуются лишь опытом. Но если опыт большой, то одно сводится к другому: игрок подсознательно решает сложную задачу, определяя вероятность того, что на руках партнеров находятся комбинации более высокие, чем у него. Кроме того, в первом туре торговли он учитывает, насколько «прикупной» является карта.
Но не будем останавливаться на доприкупной ситуации. Подсчет шансов на выигрыш здесь слишком затруднителен, и, главное, на этой стадии игры рисковый или осторожный характер партнеров являются неизвестными величинами, которые мешают решить уравнение.
Пропускаем две страницы романа. Двое игроков выходят из игры, считая свои шансы на выигрыш ничтожными. Остаются трое. Первый тур торговли завершен, то есть ни один из оставшихся трех игроков не желает рисковать большей суммой до прикупа.
«Прикуп состоялся в гробовой тишине, прерываемой только тихими голосами играющих. В котле набралось уже тридцать четыре тысячи, а до конца игры еще было далеко… Харниш отбросил восьмерки и, оставив себе только трех дам, прикупил две карты…
– Тебе? – спросил Кернс Макдональда.
– С меня хватит, – последовал ответ.
– А ты подумай, может, все-таки дать карточку?
– Спасибо, не нуждаюсь.
Сам Кернс взял себе две карты, но не стал смотреть их. Карты Харниша тоже по-прежнему лежали на столе рубашкой вверх.
– Никогда не надо лезть вперед, когда у партнера готовая карта на руках, – медленно проговорил он, глядя на трактирщика. – Я – пас. За тобой слово, Мак.
Макдональд тщательно пересчитал свои карты, чтобы лишний раз удостовериться, что их пять, записал сумму на клочке бумаги, положил его в котел и сказал:
– Пять тысяч.
Кернс под огнем сотни глаз посмотрел свой прикуп, пересчитал три остальные карты, чтобы все видели, что всех карт у него пять, и взялся за карандаш.
– Отвечаю, Мак, – сказал он, – и набавлю только тысчонку, не то Харниш испугается.
Все взоры опять обратились на Харниша. Он тоже посмотрел прикуп и пересчитал карты.
– Отвечаю шесть тысяч и набавляю пять…»
Итак, один из партнеров остался при своей карте. Ясно, что у него комбинация из четырех или пяти карт, и притом сильная, то есть никак не ниже «цвета». Очевидно также, что у обоих партнеров, поменявших две карты, на руках каре. Действительно, если бы к своей тройке они не купили бы такую же четвертую карту, то бросили бы свои карты, спасовали.
Каждый из игроков подсознательно, на основе опыта, может оценить вероятность того, что у партнеров на руках более крупная карта, чем у него, и соответственно вести торговлю, учитывая, кроме того (вот здесь-то расчеты нам не помогут), характер партнеров.
После нескольких туров торговли никто из игроков не желает рисковать большими суммами, и наступает кульминационный момент игры.
«Ни один из игроков не потянулся за котлом, ни один не объявил своей карты. Все трое одновременно молча положили карты на стол; зрители бесшумно обступили их еще теснее, вытягивая шеи, чтобы лучше видеть. Харниш открыл четырех дам и туза; Макдональд – четырех валетов и туза; Кернс – четырех королей и тройку. Он наклонился вперед и, весь дрожа, обеими руками сгреб котел и потащил его к себе».
Игра окончена, и мы можем перейти к математическим комментариям. Можно не сомневаться, что герои Джека Лондона теории вероятностей не знали и не производили в уме математических подсчетов для выработки своей игровой политики. Но действовали они в полном согласии с теорией.
Обратите внимание на одну интересную деталь игры. Два игрока меняли две карты из пяти. С очень большой уверенностью можно предполагать, что они прикупали к трем одинаковым, рассчитывая набрать каре. Так как после прикупа они смело повышали ставки, то прикуп наверняка был счастливым. Итак, Макдональд знал, что он вступает в битву с двумя каре. Кажется, что его противники попали в более сложную ситуацию. Макдональд карт не менял. Значит, на руках у него либо каре, либо самая старшая комбинация – королевский флеш. Но динамика набавления ставок показывает, что Харниш и Кернс не допускали мысли о том, что у Макдональда на руках королевский флеш. То есть, используя словарь этой книги, считали, что вероятность королевского флеша слишком мала.
Другое по теме
Метод назначений
...