Миллион цифрСтраница 1
В заголовке мы написали «миллион цифр», а точнее надо бы было сказать – миллион случайных цифр. Такая книжка, не содержащая ничего, кроме миллиона цифр, вышла в свет и нашла своих читателей. Возьмем ряд случайных цифр: 0, 1, 9, 6, 7… Что, собственно говоря, означает, что они образуют случайную последовательность? И кого интересует такой ряд? Начнем с ответа на второй вопрос.
Представьте себе, что вы проводите обширный эксперимент по агротехнике. Поле разбито на 1000 небольших участков, каждый из которых должен быть ухожен определенным способом. Пускай способов таких (агротехнических систем) 10. Занумеруем их. Теперь нужно решить, на каком участке какую агротехническую систему применить. Для этого каждому участку припишем какую-либо цифру от 0 до 9, и притом сделаем так, чтобы приписка была совершенно случайной. Только при случайной нумерации наши выводы о целесообразности того или иного способа обработки почвы будут лишены сознательной или бессознательной ошибки, связанной с тем, что для какого-то «излюбленного» способа выбираются лучшие участки.
Поручить кому-либо называть цифры наобум нельзя, нельзя даже ребенку, который не заинтересован в пропаганде ваших или еще чьих-то агротехнических теорий, нельзя потому, что, оказывается, каждый человек питает симпатию к одним и нелюбовь к другим цифрам. Поэтому «наобум» не будет означать «случайно». Ряды же случайных цифр нужны самым разным экспериментаторам: медикам и социологам, администраторам и полководцам, экономистам и метеорологам и многим-многим другим.
Нужду в случайных цифрах испытывают также и математики, решающие свои задачи так называемым методом Монте-Карло, который становится все более распространенным по мере увеличения числа электронно-вычислительных машин. Чтобы дать хоть некоторое представление об этом методе, приведем несколько простых примеров.
Мы хотим вычислить площадь произвольной сложной фигуры, какую представляет, ну скажем, Московская область на карте. Площадь всей карты найти просто – надо помножить ее ширину на длину. А как быть с фигурой причудливой формы?
Представьте себе, что на карту падают капли дождя и случайным образом усеивают карту. Подсчитаем общее число капелек и число капелек, попавших на интересующую нас Московскую область. Ясно, что отношение этих чисел должно равняться отношению площади всей карты к площади Московской области.
Разумеется, подставлять карту под дождь не надо. Каждую каплю можно представить двумя случайными числами (двумя координатами на плоскости), и тогда «заполнение площадей каплями» можно произвести мысленно. Но для этого также нужна книга случайных цифр, о которой у нас идет речь.
Еще пример. Во многих задачах требуется вычислить, через сколько времени достигнет заданного барьера некая точка, если известно, откуда она вышла, и сказано, что движется она случайными шагами одинаковой длины, но направленными как попало. Разбив это «как попало» на 10 направлений (скажем, под углами 36°, 72°, 108° и т.д.), мы можем перемещать точку при помощи книги случайных цифр.
Итак, случайные цифры нужны. Но что же такое ряд случайных цифр?
На первый взгляд безупречным выглядит следующее определение: нет правила, по которому можно было бы, закрыв пальцами любую из цифр книги, угадать, какая она, с вероятностью большей, чем 0,1 (потому что цифр 10).
Однако это определение не подходит, и вот почему. При помощи счетных машин с точностью до ста тысяч цифр после запятой вычислена величина «пи» – замечательное число, начинающееся цифрами 3,14… Если бы вы взглянули на эту последовательность, то она вам показалась бы идеально беспорядочной. Во всяком случае, вы будете действительно угадывать любую цифру лишь с вероятностью 0,1. Более того, исследуя число «пи» повнимательнее, вы найдете, что у него нет склонности к какой-либо особенной цифре и все они встречаются в среднем одинаково часто. Вы не найдете также никаких особенностей в расположении двух или трех ближайших цифровых соседей. И тем не менее тот, кто знает, что это число «пи», может предсказать каждую следующую цифру.
Другое по теме
Создатель Великой проблемы
Знаете, — признался дьявол, — даже самые лучшие
математики на других планетах, а они, должен вам сказать, намного опередили
ваших, не решили ее.
Взять хотя бы того парня на Сатурне, что очень похож на гриб
на ходулях ...