СНОВА КОНИЧЕСКИЕ СЕЧЕНИЯСтраница 2
— Ну вот, — процедил он, окинув чертеж критическим оком. — Мы получили несколько точек, удовлетворяющих уравнению у = х2. Все они, естественно, лежат на нашей параболе. Стало быть, остается соединить их плавной кривой — и график данного уравнения, то бишь парабола, перед нами!
Фило недовольно осмотрел вычерченную Мате линию.
— Позвольте, — сказал он заносчиво, — какая же это парабола? Помнится, там, на базаре, вы показали мне кривую, напоминающую рогатку, а тут…
— А тут половина рогатки, — засмеялся Мате.
— Но куда же девалась вторая половина?
— Вторая находится по левую сторону оси игреков, где координаты х отрицательны. А так как отрицательное число, возведенное в квадрат, становится положительным, значит, игрек тоже будет у нас всегда числом положительным. Вот и выходит, что координаты игрек и справа и слева от вертикальной оси совершенно одинаковы. А раз так, значит, левая часть параболы симметрична правой. Дорисуем ее, если хотите, — и целая рогатка в вашем распоряжении. А теперь, когда с параболой покончено, тем же способом вычертим гиперболу, ху = 2.
Фило почесал в затылке. Сразу видно, что тут придется попотеть!
— Почему вы думаете? — осведомился Мате.
— Так ведь в первом уравнении икс и игрек были по разные стороны равенства, а тут в общей куче…
— Раз это вас смущает, отделим их друг от друга. Нетрудно выяснить, что у = 2/х. Заменим первое уравнение вторым — и дело с концом!
— Ага! — кивнул Фило. — Тогда начнем, как полагается, с х = 0…
— Стоп! Как известно, деление на нуль запрещено. Так что начнем с х= 1. Тогда у = 2/1, или попросту двум…
— Значит, находим точку с координатами один — два, — подхватил Фило, орудуя карандашом.
— Дальше.
— Дальше нахожу точку при х = 2. Игрек при этом равен единице. При х = 3 игрек равен двум третям… Постойте, как же так? — Фило запнулся. — Выходит, чем больше икс, тем меньше игрек?
— Правильно подмечено! — одобрил Мате. — Чем больше икс, тем меньше игрек, и обратно: чем меньше будет становиться икс, стремясь к нулю, тем больше будет становиться игрек, стремясь к бесконечности. А теперь соединим, наконец, найденные нами точки одной линией — и гипербола готова.
— К тому же не наполовину, а целиком, — удовлетворенно констатировал Фило. — Точь-в-точь как та, что вы нарисовали в Исфахане.
— Должен вас огорчить. То, что я нарисовал в Исфахане, полной гиперболой не было, как не был полной конической поверхностью и тот бумажный фунтик, который мы с вами рассекали воображаемыми плоскостями. Потому что полная коническая поверхность состоит не из одного, а из двух одинаковых фунтиков, соприкасающихся вершинами. И, стало быть, в каждом из этих фунтиков образуется только одна ветвь гиперболы, в то время как полная гипербола состоит из двух ветвей.
— Значит, на нашем чертеже должна быть еще одна ветвь. Но где же она? — недоумевал Фило.
— Ее нетрудно получить, придавая иксам отрицательные значения. Только, в отличие от параболы, игрек при этом тоже будет принимать не положительные, а отрицательные значения.
— Так, так, так, — озабоченно пробормотал Фило. — Икс отрицательный. Значит, откладывать его следует по оси иксов влево. Но вот вопрос: на какой оси откладывать отрицательные игреки?
— Это уж пустяки. Положительные игреки расположены вверх по оси иксов, стало быть, отрицательные…
— Вниз! — сообразил Фило и принялся откладывать отрицательные координаты точек -1, -2; -2, -1; -3, -2/3 и, наконец, — 1/2, -4. — Теперь, — сказал он, полюбовавшись своей работой, — объединим все это хозяйство общей линией, и вторая ветвь гиперболы налицо. Ура, ура и в третий раз ура! Остается выяснить главное: для чего все это делалось?
— Для того, чтобы понять, каким образом Менехм решал задачу об удвоении куба, — пояснил Мате. — А решал он ее так: изображал обе кривые на одном чертеже, рассматривая при этом только ту часть координатной плоскости, на которой эти кривые пересекаются. Точка пересечения их — обозначим ее буквой А — удовлетворяет и первому и второму уравнениям, а следовательно, и уравнению х2 = 2. Опустим из этой точки перпендикуляр на ось иксов, обозначив основание перпендикуляра буквой В, и искомая нами длина ребра удвоенного куба найдена: это отрезок OB . Ему-то и равен х. Вот как конические сечения помогли Менехму решить одни из видов кубического уравнения. А Хайяму они помогли решить все нерассмотренные до него виды.
Другое по теме
Великое Объединение в математике
Был малый не промах, а стал, как чума.
Виною всему — теорема Ферма:
Не может никак он ее доказать,
Уайлса пример не дает ему спать.
Фернандо Гувеа
На этот раз никаких сомнений в доказательстве не было. Две
статьи общим объем ...