НЕУДАЧНАЯ ПОСАДКАСтраница 2
Ему не впрок —
Ему б монетку в руки!
Что в жертву рок
Его обрек,
Не мог он знать заране…
Один бросок,
Другой бросок —
И выигрыш в кармане!
Приходит срок,
И наутек
Пускается удача.
Смотри, игрок,
Тебя порок
Прикончит, не иначе!
Седой висок,
Слепой зрачок,
Дрожит в руке монета…
Один бросок,
Другой бросок —
И выигрыша нету!
После этого незачем, естественно, спрашивать, что происходит в караулке: и так ясно, что там играют в монетку. В ту самую, упомянутую Паскалем на улице Сен-Мишель, игру, которая у нас известна под названием орлянки, иначе «орла или решки». Теперь же ей скорее подходит название бурбонки, так как на монете, которой пользуются стражники, судя по всему, с одной стороны изображен Луи — Людовик XIV, а с другой — герб Бурбонов: лилия.
Но тут караульные, которым, видно, надоело подбрасывать монетку по одному разу, решают усложнить задачу.
— Давай вот что, — предлагает один. — Будем бросать по че-чи… ой! по четыре раза каждый, а выигрывает тот, у кого три раза из чечи… ой! из четырех выпадет Луи… Только, чур, не плуто-ва-а-а-ать! Идет?
— Нничего пподобного, — не соглашается другой, еще более пьяный. — Ттак дело не ппойдет. Ддавай бросать по ввосьми раз, и у кого ввыпадет Луи ппп… пять раз, ттот и забирай все деньги…
— Да ты что? — протестует первый. — Бросать нам так до второго пришествия! Давай по чечи…
Тут они начинают галдеть в два голоса разом (слушай не слушай, все равно ничего не разберешь!), и Фило спрашивает у Мате, кто из караульных, по его мнению, прав. Но тот говорит, что правы оба. Ведь вероятности выпадения что из восьми по пяти, что из четырех по три раза почти одинаковы. Вот если бы игроки условились, что при восьми бросках должен выпасть только один Луи, а то и вовсе ни одного, тут уж вероятность и вправду сильно уменьшится.
— Давайте разберемся, — предлагает Асмодей. — Только будем уж называть не Луи и лилия, а орел и решка. Где ваш блокнот, мсье Мате? Надеюсь, света из двери нам будет достаточно.
— Прибегнем к буквенным обозначениям, — предлагает тот, пристраивая блокнот на острых атласных коленках. — Орел — О, решка — Р. Думаю, всем ясно, что при одном броске вероятности выпадения О и Р совершенно одинаковы, то есть равны половине. Таковы же вероятности выпадения О и Р при каждом последующем, отдельно взятом броске, независимо от результатов предыдущих.
— Разумеется, мсье, — поддакивает бес. — Недаром французский математик девятнадцатого века Жозеф Бертран когда-нибудь остроумно заметит, что монета не имеет ни совести, ни памяти. Ей наплевать… пардон, я хотел сказать, ей все равно, какой стороной она соизволила шлепнуться в предыдущие разы, и это обстоятельство имеет немаловажное значение в теории вероятностей.
— Если же, — продолжает Мате, — при двух бросках учитывать результаты обоих, то возможны четыре случая: ОО, ОР, РО и PP. И если, сверх того, по условию игры очередность выпадения О и Р безразлична, то в имеющемся у нас ряде случаев элементы ОР и РО можно заменить их суммой: 2 ОР. Ибо ОР + РО = 2 ОР. Так ведь? С другой стороны, (О + Р)2 = О2+ 2ОР + P2, а это и есть OO + 2ОР + PP.
— Само собой! — важно кивает Фило.
— Посмотрим теперь, что происходит при трех бросках. Здесь уже возможны восемь случаев:
OOO, ОРО, РОО, РРО, PPP, OOP, OPP, POP.
Преобразуем это хозяйство тем же способом: OOO, 3OOP, 3OPP, РРР. И снова (О + Р)3= О3 + 3O2Р + 3ОР2 + Р3. При четырех бросках в нашем распоряжении уже 16 случаев. Стало быть, (О + Р)4 = О4+ 4O3Р + 6О2Р2 + 4ОР3 + Р4. Взглянув на все это вместе, мы увидим, что все время имеем дело с двучленом, иначе говоря, биномом О + Р, возводимым каждый раз в иную степень. Причем показатель степени бинома соответствует числу бросков. При двух бросках перед нами бином в квадрате, при трех — в кубе и так далее. Затем, обратив внимание на правые части наших равенств, увидим, что показатели степени при О и Р всякий раз указывают на заранее условленное число выпадений О или Р, а числовые коэффициенты при этих слагаемых — на число благоприятных случаев. Сумма же всех этих коэффициентов представляет собой общее число всех возможных случаев. И так как вероятность события есть отношение благоприятных случаев к числу всех возможных, то вероятность выигрыша (р) в данном случае равна отношению коэффициента соответствующего слагаемого к сумме всех коэффициентов.