ХУДОЖЕСТВЕННАЯ ЧАСТЬСтраница 2
— Полно, — смущается тот. — После Паскаля, Лейбница и Ньютона…
— Не боги горшки обжигают, мсье, — подбадривает черт. — Думаете, я не знаю, что один из ваших арифметических треугольников пригодился для решения некоего дифференциального уравнения, а другой — для расчета авиационного вала?
— Дела давно минувших дней. Знали бы вы, что я придумал месяц назад! Однажды я заинтересовался изосуммарными числами…
— Чем-чем? — переспрашивает Фило.
Оказывается, Мате изобрел это название сам. Приставка «изо» означает «равные». Следственно, изосуммарные числа — такие, у которых сумма цифр одинакова. Вот, например: 6, 15, 24, 33, 105, 204, 600. Сумма цифр у каждого из этих чисел равна 6. И значит, все они изосуммарные.
Для краткости Мате назвал сумму цифр индексом. И вот ему захотелось узнать, сколько имеется изосуммарных чисел с разными индексами, то есть равными единице, двойке, тройке и так далее. Сперва он стал их разыскивать среди однозначных чисел, затем среди двузначных, трехзначных, четырехзначных… А из найденных построил таблицу. Без таблицы, сами понимаете, в таком деле не обойтись.
— Перед вами таблица распределения изосуммарных чисел, — продолжает Мате, раскрывая блокнот. — Здесь буква «k» — значность чисел. Она у меня помещается в левом столбце. Буква «i» — индекс числа. Индексы я отложил на верхней горизонтали. Как видите, индекс не превышает девяти, в то время как значность может быть любая, до бесконечности.
k— А почему индекс, то есть сумма цифр, тоже не может возрастать до бесконечности? — сейчас же прилипает Фило.
— Все в свое время! Итак, вы видите, что количество изосуммарных чисел с индексом 1 всегда равно единице для любой значности.
— Стойте, — перебивает Фило. — Ваша таблица — это же числа треугольника Паскаля!
— Молодец, что заметили. У меня и в самом деле получился треугольник Паскаля, хотя и в форме прямоугольника, то есть в том виде, как его изображал Тарталья.
— Значит, — размышляет Фило, — по этой таблице можно заранее узнать, сколько существует, скажем, четырехзначных чисел, сумма цифр которых равна, допустим, пяти.
— Конечно. Надо только найти в ней число, стоящее в четвертой строке и в пятом столбце. Это — 35. Само собой, число это всегда можно выразить через формулу сочетаний.
— Каким образом?
— Подумайте сами. А я хочу сказать о другом. Если вы помните особенности Паскалева треугольника, то легко ответите на такой вопрос: как, НЕ ВЫСЧИТЫВАЯ, сразу определить по таблице, сколько всего изосуммарных чисел с каким-либо индексом (разумеется, не превышающим девяти) есть среди чисел всех значностей, начиная с однозначных и кончая любой заданной?
С ответом, однако, никто не торопится, и потому Мате делает это сам. Оказывается, вопрос действительно несложный. Вот, например, мы хотим узнать количество изосуммарных чисел с индексом 5, начиная с единицы по семизначные числа. Для этого, казалось бы, следует сложить все числа пятого столбца, начиная с 1 по число 210, которое стоит в седьмой строке. Но обнаруживается, что узнать это число можно и не прибегая к сложению, ибо сумма этих чисел находится в соседнем, шестом столбце, все в той же седьмой строке. Это 462. Вот сколько изосуммарных чисел с индексом 5 есть среди всех чисел от единицы до десяти миллионов.
— Мсье, это изумительно! — стонет бес.
— То ли будет! Вы ведь знаете, что в прямоугольнике Тартальи, как и в треугольнике Паскаля, строки можно заменять столбцами.
— И что из этого следует? — спрашивает Фило.
— А то, что количество изосуммарных чисел от ОДНОЗНАЧНЫХ по, скажем, ЧЕТЫРЕХЗНАЧНЫЕ, у которых сумма цифр, например, ТРИ, соответствует количеству ТРЕХЗНАЧНЫХ изосуммарных чисел с суммой цифр от ЕДИНИЦЫ по ЧЕТВЕРКУ. Вот они:
k Изосуммарные числа с постоянным индексом 3Количество их131212, 21, 3033102, 111, 120, 201, 210, 300641002, 1020, 1200, 1011, 1101, 1110, 2001, 2010, 2100, 300010Всего20
i Изосуммарные числа с постоянным индексом 3Количество их110012101, 110, 20033102, 111, 120, 201, 210, 30064103, 112, 121, 130, 202, 211, 220, 301, 310, 40010Всего20Фило рассматривает новую таблицу с видом важным и недоверчивым. Це дило треба разжуваты, как говорят на Украине! Но, в общем, идея ясна. А теперь интересно бы узнать, почему все-таки таблица ограничивается индексом девять?
Другое по теме
Учитель
Этот компонент не является столь универсальным
как задачник, оценка или нейронная сеть, поскольку существует ряд алгоритмов
обучения жестко привязанных к архитектуре нейронной сети. Примерами таких
алгоритмов могут служить обуч ...