Концентрация напряжений, или как "запустить"
трещинуСтраница 1
К пониманию проблем такого рода впервые удалось подойти не с помощью дорогостоящих экспериментов на натуральных конструкциях, а с помощью теоретического анализа. В 1913 г. К.Е. Инглис, ставший позднее профессором в Кембридже, который был полной противоположностью бесплодным представителям чистой науки, опубликовал в "Трудах института корабельных инженеров" статью, значение которой выходило далеко за рамки вопроса о прочности кораблей.
Инглис перенес на механиков приписываемое лорду Солсбери высказывание о политиках: нельзя пользоваться только мелкомасштабными картами.
Почти столетие механики довольствовались картиной напряжений, получаемой в широкой, наполеоновской манере, не обращая внимания на подробности. Инглис показал, что такой подход дает надежные результаты только в тех случаях, когда материалы и элементы конструкции имеют гладкие поверхности без резких изменений формы.
Отверстия, трещины, острые углы и другие особенности поверхности, на которые раньше не обращали внимания, повышают локальные напряжения; такие области повышенных напряжений могут быть очень малыми, но последствия - весьма драматическими. В окрестности отверстия или надреза напряжения могут значительно превышать разрушающие напряжения для данного материала даже в тех случаях, когда общий средний уровень напряжении невысок и, согласно "мелкомасштабным" вычислениям, конструкция кажется вполне безопасной.
Пусть в несколько ином аспекте, но этот факт был известен кондитерам, иначе зачем было делать желобки в плитках шоколада, и тем, кто имел дело с почтовыми марками и бумагой: ведь не случайно и не для красоты пробивались на них ряды дырочек. Да и портной, прежде чем оторвать кусок ткани, непременно делал надрез на кромке. А вот серьезные инженеры до того времени почти не проявляли интереса к вопросам образования трещин и не считали, что они имеют отношение к инженерному делу.
Легко объяснить, почему почти любое отверстие, трещина или надрез в однородной среде будет вызывать локальное увеличение напряжений. На рис. 11, а изображен гладкий однородный брусок, который подвергается равномерному растяжению с напряжением s
. Линии, пересекающие образец, представляют собой так называемые траектории напряжений, можно сказать, что вдоль этих линий напряжение передается от молекулы к молекуле. В данном случае это прямые параллельные линии, равноотстоящие одна от другой.
Рис. 11. Картина напряжений в равномерно растянутом бруске, не содержащем трещины (а ) и содержащем ее (б ).
Если же мы разорвем некоторую группу этих линий, сделав в материале надрез, трещину или отверстие, то силы, представляемые этими траекториями, потребуется как-то уравновесить. То, что происходит в действительности, не так уж неожиданно: силы вынуждены "обойти" разрыв, вследствие этого плотность траекторий напряжения увеличивается до степени, зависящей главным образом от формы выемки (рис. 11, б ). В случае длинной трещины, например, их скопление вокруг ее конца может быть очень велико. Таким образом, как раз в окрестности кончика трещины сила, действующая на единицу площади, увеличивается и, следовательно, локальные напряжения оказываются большими (рис. 12).
Рис. 12. Концентрация напряжений у кончика трещины. Распределение касательных напряжения в прозрачном материала визуализируется в поляризованном свете, полосы на фотографии представляют собой линии равных касательных напряжений.
Инглису удалось вычислить, насколько при растяжении увеличится напряжение на конце эллиптического отверстия в твердом материале, подчиняющемся закону Гука. Хотя эти вычисления справедливы, строго говоря, только для эллиптических отверстий, результаты с достаточной точностью применимы и к отверстиям другой формы: к амбразурам, дверям и люкам на судах, самолетах и других аналогичных сооружениях, а также к трещинам, царапинам и отверстиям в других конструкциях и материалах всех сортов, даже к пломбам в зубах.
Другое по теме
17. Выводы
Подведем некоторые итоги. Таким образом,
реальная активность древних образцов может отличаться от некоторой средней
величины по следующим причинам:
1. Изменение активности древесины во
времени: плюс-минус 2 %.
2.&nb ...