Энергетический подход к расчетам конструкций на прочностьСтраница 1
Шумели небо и вода,
Но сам ты прятался всегда.
Ты звал меня, касался щек,
Но я поймать тебя не мог.
Перевод Игн. Ивановского
Детский цветник стихов
Р. Л. Стивенсон
До самого недавнего времени в теории упругости и связанных с нею исследованиях пользовались терминами напряжение, деформация, прочность и жесткость, то есть, по существу, можно сказать, понятиями сил и перемещений. До сих пор и мы в этой книге вели рассуждения только в рамках этих понятий, и, мне кажется, многие считают такой подход наиболее простым. Однако, чем больше наблюдаешь закономерности природы и размышляешь о технике, тем больше склоняешься к энергетической концепции. Такой подход позволяет объяснить очень многое, и он лежит в основе современных моделей прочности материалов и поведения конструкций, то есть в основе довольно модной науки - механики разрушения. С его помощью проясняются многие моменты не только из области прочности инженерных конструкций, но и из совсем других наук, даже таких, как история и биология.
Досадно, что в сознании многих само представление об энергии было основательно запутано значением этого слова, употребляемым в обиходе. Подобно слову "напряжение", слово "энергия" часто используется для характеристики человеческого поведения. Такое словоупотребление имеет весьма слабую связь с обозначением реальной и точно определенной физической величины, к рассмотрению которой мы сейчас переходим.
В науке под энергией понимается способность совершать работу. Именно с такой величиной, имеющей размерность силы, умноженной на расстояние, мы и будем иметь дело. Так, поднимая груз весом в 5 кг на высоту 2 м, нужно совершить работу в 10 кгм, в результате в грузе будет запасено 10 кгм потенциальной энергии. До поры до времени эта энергия "законсервирована" в грузе, но, позволив грузу опуститься, ее можно вновь освободить. Высвобождаемый при этом запас энергии (10 кгм) может быть на что-то израсходован, например на работу часового механизма или на дробление льда на пруду.
Существует множество видов энергии - потенциальная, тепловая, химическая, электрическая и т. д. В нашем материальном мире всякое событие сопровождается превращением одной формы энергии в другую. Подобные превращения происходят в соответствии с некоторыми строго определенными правилами, главное из которых: "нельзя получить что-либо из ничего".
Энергия не может быть создана или уничтожена, так что общее количество энергии, имевшееся до какого-либо физического процесса, остается тем же и после него. Этот принцип называется законом сохранения энергии.
Таким образом, энергию можно рассматривать как "универсальную валюту" науки, и часто наблюдения за ее превращениями, особенно при использовании соответствующей методики учета, могут быть очень информативными. Но для этого необходимы правильно выбранные единицы, а, как этого и следовало ожидать, в традиционных единицах энергии господствует неразбериха. Инженеры-механики склонны использовать килограммометры, физики привержены к эргам и электрон-вольтам, химикам и диетологам нравится использовать калории, счета за газ приходят в термах, а за электричество - в киловатт-часах. Все эти единицы, конечно, взаимообратимы и их можно переводить друг в друга, но в настоящее время лучше пользоваться единицей энергии системы СИ - джоулем. Джоуль определяет работу, производимую силой в 1 ньютон на пути в 1 метр.
Несмотря на то что энергию можно измерять достаточно точными методами, для многих осмыслить это понятие оказывается более трудным, чем, например, понятия силы и расстояния. Энергию, как и ветер из стихотворения Стивенсона, мы можем воспринимать лишь через ее проявления. Возможно, именно поэтому понятие энергии вошло в науку довольно поздно - в современной форме его ввел Томас Юнг в 1807 г. Сохранение энергии стало общепризнанным законом только в самом конце XIX в., и только после Эйнштейна и атомной бомбы огромная важность энергии как объединяющей концепции и как фундаментальной реальности была оценена всеми в достаточной степени.
Другое по теме
Предобработчик
Данная глава посвящена компоненту
предобработчик. В ней рассматриваются различные аспекты предобработки входных
данных для нейронных сетей. Существует множество различных видов нейронных
сетей (см. главу «Описание нейронных сет ...