Гриффитс и энергияСтраница 3
Итак, положим, что два слоя атомов вначале находятся на расстоянии x см один от другого, тогда энергия деформации на квадратный сантиметр при напряжении σ и деформации ε может быть найдена следующим образом: 1/2·(Напряжение·Деформация·Объем)=1/σεx Но по закону Гука E =σε, то есть ε= σ/ E .
Заменяя в первом равенстве ε через σ/ Е , получим Энергия деформации на квадратный сантиметр = σ2x / 2E .
Если G есть поверхностная энергия твердого тела на 1 см2, то общая энергия двух поверхностей, образовавшихся при разрушении, будет 2G на 1 см2.
Теперь предположим, что по достижении нашей теоретической прочности а, вся энергия деформации в объеме между двумя слоями атомов переходит в поверхностную энергию, то есть σ*2x /2E = 2G Отсюда σ*= (GE /x )1/2.
Правда, мы немного завысили теоретическую прочность, так как предполагали, что материал подчиняется закону Гука вплоть до разрушения. Ведь в предыдущей главе мы видели, что закон Гука верен лишь для малых деформаций, а при больших деформациях кривая зависимости межатомной силы от деформации отклоняется вниз от прямой. Поэтому энергия деформации будет меньше найденной нами энергии, грубо говоря, вдвое. Чтобы учесть это, мы просто опустим двойку в выведенной нами формуле, имея в виду, что мы не претендовали на получение точной величины прочности. Следовательно, правдоподобную оценку прочности материала должно давать выражение σ*= 2(GE /x )1/2 проще которого едва ли что можно придумать.
Теперь применим эту формулу к стали, типичными величинами для которой будут: поверхностная энергия G = 1000 эрг/см2, модуль Юнга E = 2x1012 дин/см2, межатомное расстояние х = 2x10-8 см.
Подставив эти значения в формулу, получим прочность около 3x1011 дин/см2, то есть примерно 3000 кг/мм2, что составляет около E /6, Прочность обычной стали - около 50 кг/мм2, прочность специальной проволоки может быть 300 кг/мм2.
Так как величины Е и G для разных твердых тел различны, мы получим для них и различные значения теоретической прочности. Единственное, что будет роднить эти числа, - все они намного превысят значения прочности, которые нам дают реальные материалы. Пожалуй, сталь составляет исключение в этом смысле: реальная прочность некоторых сортов стали достигает все-таки 1/10 от вычисленной прочности; огромное большинство твердых тел имеет всего сотую или даже тысячную долю теоретической прочности.
Лет 30–40 назад никто не рискнул бы публично усомниться в этих вычислениях. Ведь в таком случае нужно было бы дать объяснения, откуда берется энергия вновь образованных поверхностей. Почему-то серьезно за это никто не брался. Где-то что-то было не так, и, пожалуй, рассуждали многие, лучше об этом поменьше говорить.
Если мы займемся вычислением лишь прочности как таковой, то для различных материалов получим различные значения теоретической прочности. Однако мы легко можем найти теоретические величины упругой деформации при разрыве; проделав это, мы обнаружим, что вычисленные деформации окажутся примерно одинаковыми для любого твердого тела почти независимо от его химической природы. Вообще говоря, величина этой деформации составляет примерно 10–20%. Если это так, то прочность твердого тела должна лежать между E /10 и Е /5. Таким образом, мы не вправе сказать, что все материалы должны иметь одну и ту же прочность, но мы можем утверждать (правда, без гарантированной точности), что все материалы должны были бы иметь одну и ту же упругую деформацию при разрыве. Повседневная практика, однако, убеждает нас, что материалы не только не имеют постоянной деформации при разрыве, но и расчетные прочности во всех без исключения случаях намного превышают реальные значения.
Другое по теме
18. Нумизматические датировки
Считается, что в некоторых случаях можно
датировать те или иные археологические находки при помощи монет. Однако надо
отдавать себе отчет в том, что применяемая сегодня так называемая
НУМИЗМАТИЧЕСКАЯ ДАТИРОВКА ЦЕЛИКОМ И ПОЛНОСТ ...