Дислокации и пластичностьСтраница 3
Нужно сказать, почти все эти академические предсказания сбылись. Вначале Тэйлор предполагал, что скольжение в пластичных кристаллах обеспечивается теми дислокациями, которые с самого начала присутствуют в кристалле благодаря случайностям неидеального роста. Затем оказалось, что обычно для интенсивного скольжения, которое происходит в пластичных материалах, этих дислокаций не хватает. Большие семейства новых дислокаций могут, однако, генерироваться либо вследствие дислокационных взаимодействий (источник Франка-Рида), либо на резких концентраторах напряжений, например на кончиках трещин. Последний случай встречается чаще. Таким образом напряженный металл может быстро на полниться дислокациями (около 108 на квадратный сантиметр) и легко обеспечить себе течение под постоянной нагрузкой либо стать послушным кузнечному молоту.
Напомним, что дислокация - это существенно линейный дефект, который может довольно легко перемещаться в кристалле. Если дислокаций много, им не надо совершать далекие путешествия, дабы встретить другие дислокации. Результаты встречи бывают различными: например, могут образоваться новые дислокации, а чаще сближающиеся дислокации взаимно отталкиваются. Дислокаций становится все больше и больше, двигаясь по кристаллу, они начинают мешать друг другу, переплетаясь, словно спутанные нитки. В результате материал упрочняется, и, если продолжать его деформировать, он станет хрупким.
Каждому знаком хрестоматийный пример: если надо сломать проволоку или кусок жести, то их следует несколько раз согнуть взад-вперед. Сперва металл деформируется легко, затем немного упрочняется и, наконец, ломается хрупким образом.
Металл, упрочненный деформацией, может быть возвращен в исходное мягкое состояние путем отжига, то есть нагревом его до полной или частичной рекристаллизации, при этом большинство избыточных дислокаций исчезает. Так, медные трубы следует отжигать после гибки, в противном случае они будут хрупкими.
Другое по теме
Математические анекдоты
Это лишний раз подтверждает истину, что половина людей не
знает, как живут остальные три четверти.
Пелам Г. Вудхаус
«Фамильная честь Вустеров» ...