Экспертные оценки, ранговая корреляция и конкордацияСтраница 2
мы можем найти сумму рангов, определенных экспертами, и затем суммарный или результирующий ранг цели
Ri
. Если суммы рангов совпадают — назначается среднее значение.
Метод ранговой корреляции позволяет ответить на вопрос — насколько коррелированны, неслучайны ранжировки каждого из двух экспертов, а значит — насколько можно доверять результирующим рангам? Как обычно, выдвигается основная гипотеза — об отсутствии связи между ранжировками и устанавливается вероятность справедливости этой гипотезы. Для этого можно использовать два подхода: определение коэффициентов ранговой корреляции Спирмэна или Кендэлла.
Более простым в реализации является первый — вычисляется значение коэффициента Спирмэна
Rs =
1
-
;
{3 - 9}
где di
определяются разностями рангов первой и второй ранжировок по n
объектов в каждой.
В нашем примере сумма квадратов разностей рангов составляет 30, а коэффициент корреляции Спирмэна около 0.8, что дает значение вероятности гипотезы о полной независимости двух ранжировок всего лишь 0.004.
При небходимости можно воспользоваться услугами группы из m
экспертов, установить результирующие ранги целей, но тогда возникнет вопрос о согласованности мнений этих экспертов или конкордации.
Пусть у нас имеются ранжировки 4 экспертов по отношению к 6 факторам, которые определяют эффективность некоторой системы.
Таблица 3.3
Факторы --> Эксперты |
1 |
2 |
3 |
4 |
5 |
6 |
Сумма |
A |
5 |
4 |
1 |
6 |
3 |
2 |
21 |
B |
2 |
3 |
1 |
5 |
6 |
4 |
21 |
C |
4 |
1 |
6 |
3 |
2 |
5 |
21 |
D |
4 |
3 |
2 |
3 |
2 |
5 |
21 |
Сумма рангов Сум. ранг |
15 4 |
11 2 |
10 1 |
19 6 |
12 3 |
17 5 |
84 |
Отклонение суммы от среднего |
+1 1 |
-3 9 |
-4 16 |
+5 25 |
-2 4 |
+3 9 |
0 64 |
Другое по теме
9. Загадочные династии-дубликаты внутри «Учебника
Скалигера-Петавиуса»
Мы составили списки всех правителей на
интервале от 4000 г. до н. э. до 1800 г. н. э. для Европы,
Азии, Египта. Использовались хронологические таблицы Ж. Блера [90] и
другие. Детали см. в [нх-1].
К это ...