Недостающее звено Страница 3
Одним из тех, кто тщетно пытался доказать существование связи между гипотезой Таниямы-Шимуры и Великой теоремы Ферма, был профессор Калифорнийского университета в Беркли Кен Рибет. С тех пор, как он побывал на докладе Фрея в Обервольфахе, его не покидала надежда доказать, что эллиптическая кривая Фрея слишком причудлива для того, чтобы быть модулярной. После восемнадцати месяцев усилий Рибет, как и все остальные, не продвинулся ни на шаг. Летом 1986 года коллега Рибета, профессор Барри Мазур, приехал в Беркли для участия в Международном конгрессе математиков. Друзья встретились за чашечкой кофе в кафе «Стрáда» и принялись жаловаться друг другу на неудачи и брюзжать по поводу состояния дел в математике. kraken18.at кракен маркетплейс
Когда же они, в конце концов, добрались до обсуждения последних новостей о различных попытках доказать причудливость эллиптической кривой Фрея, Рибет начал объяснять тот ход доказательства, которой он наметил. Этот подход позволял питать смутные надежды на успех, но Рибету удалось осуществить лишь малую часть из задуманного. «Я сидел с Барри и рассказывал о том, чем занимался все это время. Я упомянул, что мне удалось найти доказательство лишь для весьма частного случая, но что делать дальше, как обобщить его, превратив в полнокровное доказательство, я не знаю».
Профессор Мазур прихлебывал кофе и внимательно слушал Рибета. Вдруг он замер и с недоверием посмотрел на Кена. «Неужели Вы не видите? Вы уже доказали все, что требуется. Осталось лишь добавить гамма-нуль M -структуры, провести все доказательство с самого начала, и Вы получите все необходимое».
Рибет посмотрел на Мазура, потом заглянул в чашечку с кофе и снова посмотрел на Мазура. В жизни Рибета как математика это был самый важный момент, и он охотно вспоминает его в мельчайших подробностях. «Я ответил Мазуру, что он абсолютно прав. Как же я сам этого не заметил? Я был сильно удивлен потому, что мне и в голову не приходило добавить лишний гамма-нуль M -структуры. Ведь это так просто!»
Следует заметить, что добавление гамма-нуля M -структуры, звучавшее так просто для Кена Рибета, представляет довольно «хитроумную» часть доказательства.
«Это был тот самый нюанс, которого мне недоставало, и теперь я видел его перед собой ясно и определенно. К себе в гостиничный номер я возвращался, как во сне. Я был полностью поглощен этой новой идеей. Меня не покидала мысль: "Боже, неужели это правильно?". Сев за стол, я принялся лихорадочно строчить в блокноте. Через час-другой я закончил все выкладки и убедился в том, что все ключевые шаги мной проверены и они прекрасно согласуются. Я еще раз просмотрел доказательство от начала и до конца. Все работало, как надо! На Международном конгрессе присутствовали тысячи математиков, и в беседе с некоторыми из коллег я упомянул о том, что мне удалось доказать, что Великая теорема Ферма следует из гипотезы Таниямы-Шимуры. Новость распространилась, как лесной пожар. Мои коллеги бросились ко мне с вопросом: «Правда ли, что Вам удалось доказать, что эллиптическая кривая Фрея не модулярна?» Я подумал минуту-другую и уверенно заявил: "Да!"».
Отныне Великая теорема Ферма была нерасторжимо связана с гипотезой Таниямы-Шимуры. Если бы кому-нибудь удалось доказать, что любая эллиптическая кривая модулярна, то из этого следовало бы, что уравнение Ферма не имеет решений в целых числах, и Великая теорема Ферма была бы тотчас же доказана.
На протяжении трех с половиной столетий Великая теорема Ферма была изолированной проблемой, занимательной и неразрешимой головоломкой на краю математики. Теперь Кен Рибет, вдохновленный Герхардом Фреем, передвинул проблему Ферма в центр событий. Самая занимательная проблема, остававшаяся нерешенной с XVII века, оказалась неразрывно связанной с самой значительной проблемой XX века. Головоломка огромного исторического и эмоционального значения оказалась связанной с гипотезой, способной революционизировать современную математику. Действительно, теперь математики могли подходить к доказательству Великой теоремы Ферма, придерживаясь стратегии доказательства от противного. Чтобы доказать, что Великая теорема Ферма верна, математики исходили из предположения, что она неверна. Из этого бы следовало, что гипотеза Таниямы-Шимуры неверна. Но если бы можно было доказать, что гипотеза Таниямы-Шимуры верна, то из этого следовало бы, что и Великая теорема Ферма должна быть верна.
Другое по теме
Великое Объединение в математике
Был малый не промах, а стал, как чума.
Виною всему — теорема Ферма:
Не может никак он ее доказать,
Уайлса пример не дает ему спать.
Фернандо Гувеа
На этот раз никаких сомнений в доказательстве не было. Две
статьи общим объем ...