НЕУДАЧНАЯ ПОСАДКАСтраница 3
— Все это очень хорошо, — мнется Фило, — но весь вопрос в том, как вычислить коэффициенты заранее? Тем более — их сумму. Допустим, игроки условились бросать монету не по восьми, а по двадцати восьми раз, — что тогда?
— Хороший вопрос, — одобряет Асмодеи. — Из него следует, что нам необходимо вывести общее правило вычисления коэффициентов для любого количества бросков, иначе говоря — для любой степени бинома: О плюс Р в степени n.
— Начнем с того, что выпишем биномы для каждой степени в отдельности, — предлагает Мате. — Ну, в нулевой степени бином, естественно, превращается в единицу.
(О + Р)0 = 1,
(О + Р)1 = О + Р,
(О + Р)2 = O2 + 2OР + P2,
(О + Р)3 = О3 + ЗО2Р + ЗОР2 + Р3,
(О + P)4 = О4 + 4O3Р + 6O2P2 + 4OР3 + Р4.
Остается выписать отдельно все коэффициенты:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
— Ой, — изумляется Фило, — ведь это же треугольник Паскаля! Прекрасно помню, что по наклонным линиям числа там расположены симметрично.
— Умница! — одобрительно зыркает на него Мате. — Теперь вам легко понять, что любой коэффициент при возведении бинома в степень есть не что иное, как некое число сочетаний. А сумма всех коэффициентов данной строки равна двум в степени бинома, то есть номера строки.
Некоторое время Фило сидит молча. Ему необходимо переварить все эти неожиданные для него совпадения. До чего все связано! То-то он никак не мог уразуметь, почему это Ферма и Паскаль, занимаясь теорией вероятностей, обратились вдруг к фигурным числам и формуле сочетаний? А сочетания, оказывается, имеют для теории вероятностей немалое значение.
— Вообще, как я погляжу, — продолжает он уже вслух, — в науке одно постоянно вытекает из другого. Это похоже на разветвленную водную систему, состоящую из тысяч ручейков, речушек и рек…
— …которые в конце концов вливаются в одно большое озеро или море, — развивает его мысль Асмодей. — Нечто подобное как раз произойдет и в науке семнадцатого века. Все ее, иногда разрозненные, а иногда и связанные между собой, течения в конце концов объединятся в научном творчестве двух величайших ученых: англичанина Исаака Ньютона и немца Готфрида Лейбница.
— Бесспорно, — поддерживает его Мате. — Возьмем механику. Все, сделанное ранее Коперником, Галилеем и Кеплером в области движения небесных тел, найдет блистательное подтверждение и завершение в законе всемирного тяготения Ньютона.
— А математика, мсье? — перебивает Асмодей. — Весь этот пристальный интерес к неделимым, к наибольшим и наименьшим величинам, над которыми ломали головы и Декарт, и Роберваль, и Ферма, и, разумеется, Паскаль, — разве не приведет это в конце концов к открытию дифференциального и интегрального исчисления, которое почти одновременно и независимо друг от друга совершат Ньютон и Лейбниц?
— Не забудьте про комбинаторику, — суетится Мате, — науку о всевозможных группировках, к которым как раз относятся сочетания. Комбинаторикой усердно занимались и Ферма, и Паскаль, и Гюйгенс, который, кстати сказать, тоже внес свою лепту в разработку теории вероятностей. Ньютон же, в свою очередь, использовал сочетания в разложении степени бинома, широко известном под названием бинома Ньютона.
Фило озабоченно хмурится.
— Бином Ньютона… Все это уж было когда-то, но только не помню, когда, — декламирует он себе под нос. — Кажется, в десятом классе…
— С вашего разрешения, не далее чем несколько минут назад, — ехидничает Мате. — Потому что рассмотренные нами степени бинома имеют самое прямое отношение к формуле бинома Ньютона. Остается лишь записать ее в общем виде. — Он снова хватается за свой неизбежный блокнот. — Однако прежде всего запомните, что число сочетаний принято обозначать латинской буквой С…
Другое по теме
17. Выводы
Подведем некоторые итоги. Таким образом,
реальная активность древних образцов может отличаться от некоторой средней
величины по следующим причинам:
1. Изменение активности древесины во
времени: плюс-минус 2 %.
2.&nb ...